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m 1.0 INTRODUCTION

m 1.1 Summary

Continuous fiber composite laminates are known to undergo a substantial

amount of complex load-induced damage which can adversely affect component

performance. The nature of laminated composites is such that the material

heterogeneity acts not only as a crack initiator, but also as a crack

arrestor. Therefore, it is desirable to develop a model which accounts only

for the average effects of small scale microcracks on the macroscale problem

of interest. This approach, called continuum damage mechanics, has been

successfully applied to isotropic media such as metals and concrete [2,31.

However, the application to laminated orthotropic composites has not been

successfully demonstrated at this time. The principal difficulty in laminated

composites, unlike metals and concrete, is that the layered orthotropy of the

medium produces multiple damage modes, each possessed of some degree of

anisotropy. Therefore, whereas it is often sufficient to deal with a single

isotropic (scalar valued) damage tensor in initially isotropic and homogeneous

media, this simplicity cannot be utilized in laminated composites.

Furthermore, each of the damage mechanisms is interrelated and extremely

difficult to distinguish experimentally. Finally, the damage may not be

considered to be statistically homogeneous through the laminate thickness.

Nevertheless, the application of continuum damage mechanics to laminated

composites appears to be a fruitful quest because the alternative would be to

attempt to solve a highly anisotropic multiply connected boundary value

problem.

The ultimate objective of any continuum mechanics model is to design

structural components so as to avoid failure. In the sense that laminated

composites fail due to a complex sequence of damage events, it is essential to

*capture the important features of the damage process in order to accurately

predict failure. Obviously this will be a complex task in laminated

composites, but, as Einstein once put it, a good theory should be as simple as

possible but no simpler than that.

The essential features of a continuum damage model for laminated

composites are as follows: 1) identification and rigorous definition of the

internal state variables characterizing each of the damage modes; 2)

1I
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m development of stress-strain-damage constitutive equations; and 3)

construction of damage evolution laws which accurately predict the genesis of

each of the damage internal state variables as a function of load history.

The primary difficulty lies in accomplishing this task in such a way that the

model is independent of stacking sequence.

This report summarizes research completed during a four year period under

AFOSR grant no. AFOSR-84-0067 and originally detailed under Texas A&M Research

Foundation proposal no. RF-84-34 and dated October 1983. The objective of

this research has been to develop an accurate damage model for predicting

strength and stiffness of continuous fiber laminated composite media subjected

to fatigue or monotonic loading and to verify this model with experimental

results obtained from composite specimens of selected geometry and makeup.

Further details of this research can be found in the three previous annual

reports available either from AFOSR or the author.

1.2 Statement of Work

I The following is a brief summary of work performed under the grant:

1) develop constitutive equations relating stresses to strains and damage

internal state variables (ISV's) which may be used in a stress gradient

m field;

2) develop ISV growth laws as a function of load history for matrix

cracking, interlaminar fracture, etc.;

3 3) develop finite element algorithms capable of evaluating ply properties ir

damaged components; andm
4) perform experiments on components with selected stacking sequences in

m order to verify the model.

2



m

m 2.0 RESEARCH OVERVIEW

1 2.1 Summary of Completed Research

A substantial body of research has been completed under this grant, as

evidenced by the publication list (see Section 3) and the thesis abstracts

(see Section 4). The following is a summary of the major accomplishments to

date.

m 1) In order to gain some insight about the general makeup of damage in

laminated continuous fiber composites, two primarily experimental studies were

undertaken (Section 2.2).

2) On the basis of the experimental studies, a general framework was developed

using continuum damage mechanics to characterize the response of laminates

with matrix cracks, and this model was compared to experimental evidence

(Section 2.3).

1 3) The second order tensorial nature of the damage parameter was successfully

demonstrated for the case of curved matrix cracks (Section 2.4).

4) Using the model developed above.a procedure was constructed with the aid of

*fracture mechanics to characterize the damage state for any laminate (Section

2.5).

m 5) The model was then extended to account for both matrix cracks and

delaminations, and was successfully compared to experimental results (Section

2.6).

6) A micromechanics solution was obtained for laminates with matrix cracks and

this result was utilized to demonstrate that the model is exact for the case

of evenly distributed matrix cracks of constant size (Section 2.7).

7) The procedure was demonstrated for calculating ply level stresses and the

effects of damage on these stresses (Section 2.8).

I
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8) Development of damage evolution laws was initiated (Section 2.9).

I 9) A finite element program was developed for calculating the response of

plates with spatially varying damage (Section 2.10).

The research grant has thus far resulted in a total of twelve

publications in the open literature (see Section 3), ten conference

presentations and two invited lectures (see Section 6). In addition, the

program has produced two Ph.D.'s and four masters of science (see Section

4). All of these students have gone on to high visibility research positions

(see Section 5).

The details of the research completed to date are contained in the

research publications listed in Section 3, several of which are included in

the appendix to this report. In the following sections the major achievements

will be reviewed. However, in order to make this document more easily

readable, these accomplishments will be discussed in summary rather than in

detail.

U 2.2 Experimental Studies of Damage

m The research program was initiated with a literature survey (1] which was

undertaken to ascertain whether sufficient experimental data were available in

the literature to obviate the necessity for performing in-house testing. It

was found that no currently available research contained sufficiently detailed

explanations of damage to characterize the model envisioned in this research

effort. Therefore, it was decided to initiate our own experimental program

under the auspices of the grant. Two M.S. theses resulted from this phase of

the research [2,31.

The first study detailed the initiation and growth of matrix cracks in

graphite-epoxy AS4-3502 cross-ply laminates. Primary attention was placed on

identifying the mechanisms of initiation and growth of matrix cracks.

Emphasis was also placed on observing the effect of these cracks on various

components of stiffness loss.

I A qualitative analysis was made to determine the significance of the

damage events observed. These included crack density, stiffness reduction,

crack shapes, development of crack surface area, and residual strain.

4
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An array of seven cross-ply laminates was selected for study in order to

examine the effect of the number of successive 900 plies on matrix crack

damage. In addition, under appropriate loadings a highly developed state of

matrix cracking can be obtained in the laminates without introducing other

modes of damage, such as edge delamination.

In order to document the progression of matrix cracking one must

nondestructively evaluate the damage in each laminate. This was accomplished

by using edge replication and x-ray radiography. A typical edge replica

showing damage in a cross-ply [0/9031s laminate is shown in Fig. 1. In this

figure one can see three distinctly different types of matrix cracks: straight

cracks, partial angled cracks and curved cracks. An x-ray radiograph of this

same damage state is shown in Fig. 2. A straight crack appears as a sharp

narrow band while a curved crack appears as a wider, fuzzy band. A typical

progression of damage development is shown in Fig. 3. Other damage modes,

including interlaminar delaminations and axial splitting, are visible in these

radiographs. Interlaminar delaminations were observed to develop at the

intersection of straight and curved cracks with the 00 interface as well as at

the intersection of axial splits and transverse matrix cracks.

The experimental results showed a correlation between the number of

curved cracks and the relative thickness of the 0* and 90° layers as well as

the number of consecutive 90 plies. The bar chart in Fig. 4 shows the

relationship between straight cracks and curved cracks for an increasing

number of 900 plies in a [O/90n s laminate. It is interesting to note that

for n greater than 2 there are more curved cracks than straight cracks.

The axial stiffness loss due to matrix cracking in five laminates was

monitored during step-wise monotonic loadings. The stiffness was measured

only on the unloading portion of the axial stress-strain curves. Thus,

stiffness was used to indicate the degree of damage development during any

monotonic loading step. The stiffness results are shown in Fig. 5. All

curves represent an average of two or more replicate specimen results. The

stiffness values are normalized to the undamaged stiffness and compared to the

total crack density, which is the total number of straight cracks and curved

m cracks per unit length of specimen.

I



Izi Z

I STRAIGHT CRACK

I 
LOADING DIRECTION

I 
PARTIAL ANGLED

... .. CRACK

I (B)

-CURVED CRACKI
I

I k

i FIG. 1. EDGE REPLICAS OF MATRIX CRACKS

(A) PARTIAL ANGLE CRACKS

(B) CURVED CRACKS

*6



I
I

I ILOADING DIRECTION

I
I

angle crack

..... . straight crack

I yV

I

FIG. 2. DETAIL OF X-RAY RADIOGRAPH SHOWING DIFFERENCE
BETWEEN STRAIGHT AND ANGLE CRACKS

i7



A 48

OF DAAEI A 10943sLMNT

8I j



1
I
I
I

U 48I

I
I >

LU 26

* 22

- 18 18

W Ui co9 wa

0 C-)

i [0/90]1s [0/9021 ] 10/9031]

IFig. 4. Increase in Curved Cracks as Number of Consecutive 90
°0

Plies Increases.

I-I



I r 8

04 00

L..)

O'h C~

0 6

C3

oo

0 IAIA

100



I

I For 10/90n s laminates, where n=h, 1, 2, and 3, stiffness loss increases

with increasing n. This is explained by the fact that for increasing n more

load is carried by the 900 plies. Hence, for the same crack density (damage),

the laminate with more 900 plies will lose more stiffness. This same trend

3 can be explained by ply discount, though the ply discount method usually

overestimates the total stiffness loss. It is noted that the last data points

3 for the 10/90/01s and 10/901s were taken after application of 95 percent of

the ultimate load, whereas the last data points for the remaining laminates

correspond to the test termination loads when other damage modes began to

occur.

For laminates with identical 00/900 ratios such as the [0/90]s and

102/902] s, the laminate with the higher consecutive number of 900 plies shows

greater stiffness loss. This is due to the fact that the laminate with the

higher consecutive number of 90°'s has more crack surface area for a given

crack density resulting in a larger crack opening displacement. This implies

that the constitutive model should reflect crack opening displacements in

addition to surface area of cracks.

In order to understand what mechanisms control the geometry (location and

orientation) of the curved cracks, a finite element model was developed to

analyze the- stress and strain fields in the vicinity of a straight crack

[4]. Constant strain triangular elements (CST) were used to model an axial

section through the thickness of a laminate. Internal boundary generation was

also included. The ply level material constitution was assumed to be

transversely isotropic elastic. The 10/9021s laminate was selected for

m detailed study.

The basic finite element mesh used to model the 10/9021s laminate with a

straight matrix crack is shown in Fig. 6. The squares shown in the figure

actually correspond to two "CST" elements. The broad dark line shown between

m the 0/90 interface represents the resin rich region where there are actually

four rows of "CST" elements. The broad dark line shown between the 0/90

interface represents the resin rich region where there are actually four rows

of "CST" elements. More elements were used in the interior 900 layer to
increase the accuracy of the solution.

A typical crack family for a [0/902]s specimen is shown in Fig. 7. From

edge replicas, the mean distance between a straight crack and its nearest

I
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1

m associated curved crack as measured at the 0/90 ply interface was found to be

9.8 mils (0.2489 mm), with a standard deviation of 2.08 mils (0.05283 mm).

These statistical parameters were determined from 25 crack spacing

measurements. The minimum spacing observed was 7.0 mils (0.1778 mm). The

mean angle between the curved cracks and the normal to the interface was found

to be 300.

The distribution of maximum principal stress near the 0/90 interface

determined by the finite element model is presented in Fig. 8. The principal

stress has been plotted along each of the first three rows of elements, below

the resin rich region. For comparison, Fig. 8 also shows the mean and minimum

m crack spacings that were determined experimentally.

The qualitative agreement between the experimental and finite element

results supports the contention that curved cracks are caused by a rotation of

the principal stresses which is induced by a shear lag effect resulting from

the vertical matrix cracks. This phenomenon will be discussed further in

ISection 2.4.
The second experimental effort concentrated on the mechanics of

delaminations. The initiation and growth of internal delaminations in

laminated fiber-reinforced composites made of AS4/3502 graphite/epoxy was

studied. Cross-ply laminates of the general type [On/90mis were subjected to

a tension-tension cyclic load at 2.0 Hz and R=O.1 to develop internal

delaminatlons. Isolation of internal delaminatlons from other major matrix

fracture phenomena was the main reason for selecting cross-ply laminates for

this study.

The X-ray radiography nondestructive method was used to record the

internal delaminations at specified load cycles. In addition, Scanning

Electron Microscopy was used to examine the damage state in the interior of

the laminates. Also, the laminate mechanical properties Exx and vxy were

I measured at the cycles where the damage was recorded.

Following the characteristic damage state (COS), all laminates first

developed axial splits and then internal delaminations. Matrix fracture in

the 00 layers initiated along transverse matrix cracks. Internal

delaminations initiated at interfacial points where axial splits intersected

transverse cracks. Two distinct patterns of axial splits and delaminations

were observed. The 10 2/9021s laminate developed axial splits which completely

I
14I
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m

extended to the specimen ends as shown in Fig. 9. Internal delaminations

initiated at internal corner points and grew along axial splits to form

I axially continuous delaminations.

The 10/90 21s, 10/9031 s , and [0/9o s laminates first developed short axial

splits and then internal delaminations which initiated at internal corner

points. The delaminations preferred to initiate early in the fatigue life

along closely packed transverse crack fronts intersected by a relatively large

number of short axial splits as shown in Figure 10. These delaminations

coalesced to form a continuous transverse delamination.

All laminates experienced a decrease in the axial modulus, Exx, and in

Poisson's ratio, vxy" The axial modulus exhibited a relatively small decrease,

whereas the Poisson's ratio changed by a factor of 2 to 4 depending on the

stacking sequence.

A stress analysis was employed to interpret the initiation and patterns

of matrix cracking and delamination growth 141. The results of the stress

analysis were consistent with the observed experimental results. The

analytical results suggest that axial splits initiate at transverse matrix

cracks and delaminatlons initiate at the intersection of transverse and axial

matrix cracks. The rate of growth of axial delaminations depends on the

maximum stress, density of axial splits, and on the relative position of the

axial splits along which the axial delaminations grow.

The observations made during the experimental program suggested several

important factors which would have to be included in the model in order for it

to be useful as a general theoretical tool. First, the model should include

both matrix cracks and delamination damage parameters as independent state

variables. Second, because different stacking sequences with identical

numbers of plies could experience vastly different damage, the model must be

independent of stacking sequence; that is, given the same input, the model

should be capable of predicting different damage states for different stacking

sequences. Third, because the same stacking sequence could undergo different

damage states for differing load histories, the model must be capable of

reflecting the effects of load history. Fourth, because different crack

orientations produce widely varying stiffness reductions, the model must be

tensorial in nature. Finally, it was found that the geometry of cracking in

quasi-isotropic laminates with both matrix cracks and delaminations was so

complex as to preclude an accurate micromechanics solution.

16I
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I 2.3 General Framework of the Damage Model

I The experimental program elucidated the need to develop a theoretical

damage model which was capable of accounting for the effects of microcracks on

component strength and life without resorting to a detailed analysis of each

crack. Therefore, a technique was sought which would accomplish this as

m rigorously as possible.

In 1958, L. Kachanov proposed a novel approach to modelling the effect of

microcracks on the overall response of homogeneous and isotropic media [5].

In this approach, the effect of microcracks is reflected in thermomechanical

constitutive equations rather than by including numerous time-dependent

internal boundary conditions. Because the resulting procedure produces a

simply-connected, or continuous boundary value problem which is considered to

be "equivalent" to the actual domain with microcracks, the methodology has

been termed continuum damage mechanics. Although Kachanov's approach was

initially heuristic, a broad field of study has developed from that embryonic

state [6,71. However, until recently most efforts have been empirical and

confined to initially isotropic media.

In the current research effort it was decided to attempt to produce a

stronger theoretical footing for the continuum damage mechanics approach, and,

in so doing, hopefully simultaneously developed an extension to layered and

orthotropic media. This was initially accomplished for the case of laminates

with matrix cracks and its usefulness was demonstrated by comparing to

experimental evidence [8,91.

A continuum damage model must contain four essential ingredients in order

to be complete: 1) stress-straIn-damage equations; 2) damage evolution laws

for the damage ISV's; 3) a failure function describing local failure in terms

of the damage ISV's and observable state variables; and 4) an algorithm for

solving boundary value problems in which the state is nonhomogeneous. If

steps one through three can be accomplished accurately, then step four is

relatively straightforward, involving a procedure not unlike extending an

elastic algorithm to include plasticity.

m At this point in the model development steps 1 and 4 are essentially

completed, and step 2 is well underway. Step 1 for the case of matrix

cracking is discussed in this section, and the extension to include

19I
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I delamination is summarized in Section 2.6. Step 2 is developed in Section

2.9, and step 4 is discussed in Section 2.10.

To proceed with the model development, consider an initially unloaded and

undamaged composite structural component, denoted B, as shown in Fig. 11a,

where undamaged is defined here to mean that the body may be considered to be

continuous (without cracks) on a scale several orders of magnitude smaller

than the smallest external dimension of the component. Although cracks may

exist in the initial state, their total surface area is assumed to be small

compared to the external surface area of the component. Under this assumption

the body is assumed to be simply connected and we call the initial boundary

surface the external boundary S. Although the component is undamaged, there

may exist local heterogeneity caused by processing and second phase materials

including fibers, matrix tougheners and voids. In addition, the body may be

subjected to some residual stress state due to processing, cool down, etc.

Now suppose that the component is subjected to some traction and/or

deformation history, as shown in Fig. 11b. The specimen will undergo a

thermodynamic process which will in general be in some measure irreversible.

This irreversibility is introduced by the occurrence of such phenomena as

material inelasticity (even in the absence of damage), fracture (both micro-

and macroscale), friction (due to rubbing and/o slapping of fractured

surfaces), temperature flux, and chemical change. While all of these

phenomena can and do commonly occur in composites, in the present research it

will be assumed that all irreversible phenomena of significance occur in small

zones near crack surfaces. Outside these zones, the behavior will be

considered to be elastic and therefore reversible under constant temperature

conditions. All fracture events will be termed damage. Due to these fractire

events, the body will necessarily become multiply connected, and all newly

created surfaces not intersecting the external boundary will be termed

internal boundaries. Because of the above assumptions the model may be

limited to polymeric and ceramic matrix composites at temperatures well below

the glass transition temperature T or melting temperature, where

viscoelasticity in matrix materials is small. Metal matrix composites may

have to be excluded due to complex post-yield behavior of the matrix.

l While fracture involves changes in the boundary conditions governing a

complex field problem, it is hypothesized that one may neglect boundary

I
20I
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condition changes caused by creation and alteration of both internal and

external surfaces created during fracture as long as the resulting damage in

the specimen is statistically homogeneous on a local scale which is small

compared to the scale of the body of interest. However, the total newly

m created surface area (which includes internal surfaces) may be large compared

to the original external surface area. Under the condition of small scale

statistical homogeneity all continuum based conservation laws are assumed to

be valid on a global scale in the sense that all changes in the continuum

problem resulting from internal damage are reflected only through alterations

in constitutive behavior. Typical microstructural events which may qualify as

damage are matrix cracking in lamina, fiber/matrix debonding, localized

interlaminar delamination and fiber fracture.

Now consider some local element labelled VL and with external surface

faces S1 arbitrarily chosen normal to a set of Cartesian coordinate axes (xI ,

x2 , x3 ), as shown in Fig. 11c. The element VL extracted from B and the newly

I created surfaces, denoted S2 and with volume Vc, are subjected to appropriate

boundary conditions so that the element response is identical to that when it

is in B. Furthermore, the volume of the element is defined to be VL, which

includes the volume of any initial voids. The scale of VL is chosen so that

its dimensions are small compared to the dimensions of B, but at the same

time, the dimensions of VL are large enough to guarantee statistical

homogeneity of the material heterogeneities and defects in VL even though the

I total surface area of defects may be of the same order of magnitude as S1.
Suppose furthermore that in the absence of defects or at constant damage state

the material behavior is linearly thermoelastic. Now consider the local

volume element VL. For the case where tractions or displacements are applied

uniformly to the external boundary of VL, the average stresses and strains in

VL will be determinable from the external boundary tractions or displacements.

Although the damage process actually involves the conversion of strain

energy to surface energy, the fact that the damage is reflected in the local

constitutive equations rather than boundary conditions suggests that it be

treated as a set of energy dissipative internal state variables which are not

discernible on the external boundary of the local element.

I Under the conditions described above the pointwise Helmholtz free energy

per unit volume h of the undamaged linear elastic medium may be expressed as a

second order expansion in terms of strain cij and temperature T as follows:

1 22



m
m

h = u - Ts = h(eij,T) =

A Bijij + ijkleijekl + DAT + EiAcjAT + FAT2  (1)m
where u and s are the internal energy and entropy per unit volume,

respectively, and A, Bij, Cijkl, 0, Eij and F are material parameters which

are independent of strain and temperature and AT = T-TR, where TR is the

m reference temperature at which the strains are zero at zero external loads.

It is our intention to construct locally averaged field equations which

are similar in form to the pointwise field equations. In performing this

averaging process the pointwise Helmholtz free energy described in equation

(1) will undergo a natural modification to include the energy conversion due

m to crack formation.

Now consider the local element shown in Fig. 11c with traction boundary

conditions on the external surface S1. In addition, the interior of VL is

assumed to be composed entirely of linear elastic material and cracks (which

may include thin surface layers of damage). Integrating pointwise equation

(1) and the conservation laws over the local volume will result in

h 'A+B+1 + D AT+EA 1FLAT 2 (2
hEL =AL+ BLijcLij + CLijklcLijcLkl +  LATL + ELiLijATL + L (2)

I where AL, BLij , CLijkl, DL, ELij, and FL are locally averaged material

constants, and the subscript L implies local averaging. Also,

a Lji,j = 0  (3)

GLij = OLji (4)

OLij Lij + qLjj r L (5)

L - T=r

- rL ( T> (6)

where u , called the effective local internal energy, is given by
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u =UEL UL(7)

I UEL represents the internal energy of the equivalent uncracked body, given by

EL -= VL VL LdV - L jTE6dS (8)

3 where T are called equivalent tractions, representing tractions in the

uncracked body acting along fictitious crack faces, as described in detail in

Appendix 7.1, and uc is the mechanical power output due to cracking, given by

6c fTc6dS (9)
L VL S2 T i

where Ti are fictitious tractions applied to the crack faces which represent

the difference between the actual crack face tractions and TEV Furthermore,

the locally averaged stress is given by

-I f oijdV (10)

I and the locally averaged strain is given by

1 1
ILij = V L Sj (uinj + u in)dS (11)

where ni are components of the unit outer normal vector to the surface S1 .

Equations (2) through (6) are identical in form to the standard pointwise

m conservation laws.

On the basis of this similarity we now define the locally averaged

m Helmholtz free energy:

hL- u- TS= U TS + u = h + Uc (12)L LLLL ELLL L EL L

where it can be seen from definition (8) that hEL is the locally averaged

3 elastic Helmholtz free energy for which residual damage is zero.

The similarity between the pointwise and local field equations leads to

3 the conclusion that

I
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u~j-ah L ah EL L u (14)
m °Lij L acLi j aLij

Equations (14) serve as the basis for thermomechanical stress-strain
relations in damaged composites. All damage is reflected through the local

energy due to cracking u . This term is modelled with internal state

variables characterizing the various damage modes.

In order to describe the internal state, we first consider the kinematics

of a typical point 0 with neighboring points A and B, as shown in Fig. 12.

Before deformation lines OA and OB are orthogonal, as shown in (a). After

deformation we image that lines Joining 0', A', and B' are as shown in (b),

and just at the instant that deformation is completed, a crack forms normal to

the plane of AOB through point 0', as shown in (c). Furthermore, point 0'

becomes two material points 0' and 0" on opposite crack faces and points A'

and B' deform further to points A" and B". It is assumed that all

displacements, including displacement jumps across crack faces, are

infinitesimal, so that strain gages attached at points 0, A, and B record only

the deformation A"O'B". However, the actual strain is associated with

A"O"B". Therefore, it is essential to construct an internal state variable

which will relate these two strain descriptions. We therefore construct the

vectors 'c connecting 0' and 0" and n c describing the normal to the crack face

at 0', as shown in (c). It should be noted that uc can be used to construct a

pseudo-strain representing the difference in rotation and extension of lines

A"O'B" and A"O"B".

Now recall that the mechanical power output during cracking is given by

equation (9). We assume that at any point in time t I tractions Ti can be

applied along the crack faces which will result in an energy equivalent to

that produced by the damage process:

u c(t1) =- 1 f T u cdS (15)

S2(t1)

I
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UFIG. 12. Kinematics of the Damage Process
a) Point "0" Prior to Deformation,
b) Point "0" After Deformation and Prior to Fracture,
c) Point "0" After Fracture.
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The quantities Ti do not necessarily coincide with the terms in the integrand

_ of (9) since the process is in some measure irreversible. However, we define

lI them such that the total energies in equations (9) and (27) are equivalent.

For convenience we will call them crack closure tractions, although they do

m not necessarily result in complete crack closure.

Guided by the fact that ic and 'c describe the kinematics of the cracking

process at point 0, we now define the following second order tensor valued

internal state variable:

f ucncdS (16)aiJ =- V L S2

l The above description has been previously proposed by M.L. Kachanov [10].

Substituting the above into (15) and utilizing Cauchy's formula gives

c C 1 f c dS (17)
uL V LS j~ i

Therefore, if we define Oi to be the average crack closure stress for

the nth damage mode such that

1_ n OjQijdS (18)
GLklOLkl VL

It follows that

u C ,c n (19)L Ll JLlj

It is now proposed that u c be expanded in a Taylor series which is second

order in each of its arguments. Substituting this result and (2) into

equation (14) and neglecting higher order terms results in

a B E & +Cin n (20)

ILij = Lij +ELijaTL + CLijkl6Lkl + ijklcaLkl

Equations (20) are interpreted as the ply level equations governing the

response of plies with matrix cracks.

Equations (20) have been implemented to a laminate analysis code to

produce predictions of stiffness loss as a function of matrix crack damage in

I
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crossply laminates [9]. Because this procedure is fairly cumbersome to review

here, the interested reader is referred to Appendix 7.2 for the details of

this implementation. The results shown in Figs. 13-15, originally obtained in

1985, gave cause for optimism that the model might be a useful tool for

3predicting damage dependent stiffness components. As will be shown in further

sections, these initial results have been substantiated by numerous further

* predictions.

2.4 Study of the Tensorial Nature of Damage

Experimental evidence indicates that curved matrix cracks can occur in

significant quantities in cross-ply laminates [2). As a measure of the

capability of the model to predict stiffness loss components other than the

m axial stiffness, it was decided to use the model to predict out-of-plane

stiffness loss due to the curved cracks. The procedure will be briefly

* reviewed here.

Consider now a local volume element with nc cracks as shown in Fig. 16.

m The damage ISV for matrix cracking may be written in the following form

1 1 nc
_i I f uln dS (21)

2k

where matrix cracking is designated by the superscript 1. Now define

1k 1 u
Q1j -twL f un dS (22)

I 1
2k

so that equation (21) may be written

II 1i (23)Mij = Z (23)

k=1

I
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Now, since a is a second order tensor,

-1 ck k~q ik

-i ap, a jq' apq' (24)

k=1

where a ip are the direction cosines relating the coordinates of the kth

crack to the laminate coordinates. Differentiating (24) with respect to the

midplane strain components gives

I-1 n 1k

ac Ck a3ciq
n = ka (25)T C m k = 1 i p ' 3 C m n

m
Transforming to the coordinates of the crack gives

-1 nc  1k k

0i= c k ak p' 3 r S4
3 amn k jl aj k s ac mn

nc  1k

Ia- p aq k a k  (26)k=1 i 'amn'ans' ae ris ,U ~k=1 rsI

However, since it is assumed that "22/aE22 is the only non-zero component,

the above reduces to

-1 n 1
ami = a 2 k k k au2 1 2 1- aj am an a --- 27-

m k=1 a2421

The above equations may be utilized to obtain the last term in the reduced

stiffness equations, where it is assumed that "a212 ,/ac 21 21 is independent of

crack orientation and is obtained from [0,90,01 experimental data [21:
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n n 9 0k=J)k(Zk-Zk) (j/ )k (28)Sim =1Ci j)ktk+k1k=1 j -l T

where St are the components of the effective laminate stiffness, n is the
number of plies, and overbars denote quantities measured in laminate

coordinates.

Comparison of the model prediction to experimental results for axial
stiffness loss in a [0, 9021s laminate is shown in Fig. 17. Although these

results are encouraging, the truly exceptional results are shown in Fig. 18.

In this figure out-of-plane stiffness predictions are compared to finite

element calculations. It was necessary to compare to FEM results for the out-

of-plane component because experimental techniques are not yet available for

accurately predicting out-of-plane stiffness. The results indicate that the

model is erroneous without the curved crack correction, but are quite accurate

when the second order tensor transformation is included for the curved

cracks. This result supports the use of the second order tensor damage

parameter, as opposed to a vectorial representation [11.

2.5. Theoretical Development of Energy Release Rates For Interior

Delaminations

*A fracture mechanics approach has been used to develop an expression

relating the ISV's to the surface area of delaminations. During loadup when

the delamination surface area is growing, an energy formulation may be

employed to relate the ISV to the strain energy release rate of

delaminations. The energy loss in the local volume due to delamination,
c d(uL) , is related to the strain energy release rate of delaminations, Gd, as

follows

I cdl
(UL ) d f GddS (29)

where Sd is the surface area of delaminations. Following the constitutive

model development, the local energy loss may also be expressed as

I
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cd= Id d (30)

(L) i 1jELi 0jI
where a are the ISV's for delamination damage.

For the case of symmetric damage in symmetric laminates, the damage-

dependent longitudinal modulus is obtained by differentiating the damage

dependent laminate equations with respect to x" Furthermore, considering only

one delamination interface location, the longitudinal modulus is given by

1n M 0lz-Zo
pr Ex X O- T ki1 (Q11)k(zk-zk-1)"3 ?x )k + t a) _- (31)

where Exo is the initial undamaged modulus and t is the laminate thickness.

Now considering only a single symmetric delamination site and only that

part of the energy associated with crack-opening displacements in the x

direction, we may equate (29) and (30) to obtain

I
D 1 GddS (32)

- VLQ x Sd

Ix
where Idij has been set equal to Q, for a single delamination site. As a first

approximation, the O'Brien [12] strain energy release rate model for free

edge delaminations will be assumed to be valid for internal delaminations and

I is expressed as

2tl:xt *
Gd3---E- (Ex E) (33)

where t is the laminate thickness and

m
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Ei t i

E* = t(34)1t

where m is the number of sublaminates formed by the delamination and Ei is the

I longitudinal modulus of each sublaminate. Substituting (33) into (32), and
integrating the delamination ISV results inm

D = xt (E - E* S (35)

I 2x

m For the single delamination site,

I
V L tIS (36)

where S is the total interface surface area and tI is the thickness of the two

layers adjacent to the delamination. Substituting equation (36) into (35)
results in

(D 1 (Ex -E ) d
0~3 TC xt1  X Q, (37)

I Now differentiating with respect to ex, we obtain

3ca = 1 -E d (38)

mEx t S

Therefore, to predict the degraded axial modulus of a laminate we need

standard laminate analysis data, the delamination site, and the fraction of

the total delaminated area in the local volume. Equation (38) analytically

addresses the influence of laminate stacking sequence and delamination site on

the degraded modulus and requires only an experimental measurement of the
I delamination surface area.
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2.6 Extension of the Model to Account for Delaminations

I Research is underway to extend the current model to predict the response

of laminates with both matrix cracks and interior delaminations, as shown in

Fig. 19. This problem is complicated by two factors. First, because these

two damage mechanisms are oriented differently, they require two separate

tensor-valued damage parameters. Furthermore, the mechanics of these two

damage modes are substantially different. The matrix cracks may be assumed to

be statistically homogeneous over each ply in a small local volume element.

Therefore, classical local volume averaging may be used to obtain this damage

parameter. On the other hand, delaminations are not statistically homogeneous

in the z coordinate direction. This requires that a modification be made to

statistical averaging techniques. Although statistical homogeneity is assumed

in the x and y coordinate directions, a kinematic constraint similar to the

Kirchhoff-Love hypothesis is employed in the z direction. The resulting

damage parameter is a weighted measure of damage, with cracks farther away

from the neutral surface causing a greater effect on material properties.

* The ply level stress-strain relations are given by

aij = C ( - (39)

In order to account for interply delamination the following kinematic

assumption is made (See Fig. 20.):

u(xyz) = uO(x,y) - z[B0  1 + H(z-ZkD (40)

I and

w(x,y,z) = w°(xy) - H(z-ZWD (41)

where u is the in-plane displacement and w is the out-of-plane displacement.

Furthermore, B represents rotations of the midplane. The quantities with

superscripts o are midsurface values, and quantities with superscripts D are

caused by interlaminar cracking.

I
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Employing standard laminate averaging techniques will result in the

m following laminate equations

( N o (C0 I 2 _z2_ KI{N = z [Q~k(zk - Zk-1) L} 2 IQk(zk - )
k=1 k=1

m
d D n M

+ I Q.i(zi - Zi-l) {OLi r [QIk(zk - Zk_1) (cM k  (42)
i=1 k=1

mn 2 o in 3 3

I ) E Q](Z - z' 1) {F.k  )LkI k=1

m where (N] and (M} are the resultant forces and moments per unit length,

respectively, and {:~ and {:} represent the damage due to matrix cracking

and interply delamination, respectively. Details of this development aremgiven n Appendix 7.3.

mUtilizin the procedure outlined in Section 2.5, the model has been

compared to experimental results for both cross-ply an quasi-Isotropic

laminates with both matrix cracks and delaminations.I While the damage-depenent laminate analysis model may be used to predict

any of the effective engineering moduli of a laminate, experimental results

are only available for the axial modulus and Poisson's ratio. Therefore, the

general utility of the model will be demonstrated by comparing model

I
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predictions to experimental results for Ex and vxy for only the fully

developed damage states. A typical x-ray radiograph is shown in Fig. 21. The

delamination interface location was determined experimentally and the

delamination area was estimated from the x-ray radiographs using an optical

planimeter procedure. In both the model analysis and data reduction, it was

assumed that the delamination sites were symmetrically located about the

laminate midplane and contained the same delamination surface area.

The bar chart in Fig. 22 compares the model predictions to the

experimental values of the engineering modulus, Ex, for combined matrix

cracking and delamination. The delamination interface location and percent of

delamination area are listed in the figure underneath the laminate stacking

sequence. As can be seen, the comparison between model results and the

experimental results is quite good. Some limited results for Poisson's ratio

are given in Fig. 23 using the same bar chart format. With the exception of

the I0/902]s laminate, these results are also quite good. The experimental

value for the 10/ 9 0 21s laminate is quite suspicious since this laminate

exhibits a much larger change in Poisson's ratio than the other laminates

without a corresponding difference in the delamination surface area. It

should be noted that values of Poisson's ratio for the quasi-isotropic

m laminates are not available.

2.7 Micromechanics Model Verification

Because the ISV definition given by equation (16) is locally averaged, it

represents a quantity which is not exact under certain circumstances.

Furthermore, since the geometry of many cracked laminates is so complex as to

preclude an exact micromechanics analysis, the author has utilized the

phenomenological approach for measuring the damage state described in Section

2.5. Finally, the model has previously been compared only to experimental

results. For these reasons it was felt that some research was warranted to

place the ISV formulation on a stronger theoretical footing. This was

accomplished by formulating a micromechanics solution for a single ply with

matrix cracks and incorporating this into a laminate analysis scheme. This

research is summarized in this section, and a detailed discussion is contained

in Appendix 7.10.
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Consider a laminated composite material with an infinite number of 0 and

90 degree layers as illustrated in Fig. 24a. Since the crack patterns in 90

degree layers may be random, displacement fields in each crack element

surrounded by two adjacent crack surfaces and two material interfaces are

different. It is apparent from Fig. 24a that a solution to the boundary value

problem for all possible displacement boundary conditions is impractical, or

at least very cumbersome to obtain. A relatively simple solution may be

obtained by postulating a fictitious boundary value problem which represents a

statistically arranged volume element shown in Fig. 24b. The mutual influence

between cracks in different 90 degree layers may be implicitly taken into

account by assuming the y and z plane to remain plane throughout deformation

under the axial tensile loading, P, at far-field. The displacement fields may

then be assumed as (U/a)x + I amn sinax cos y

mn

v = -(v0/t)y (44)

w = -(Wo/b)z

where m, n = 1, 2, 3, ..., k

a = (2m-1)i/2a (45)
a = (2n-1)w/2t

Using the minimum potential energy theorem, it can be determined that

C C C 2

wo/a = (p/2t) d+ 4 C (46)

64 xx

and the axial component of the damage tensor is

= (-1)p/2t (47)
- Cx

64 x
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m where

I 1 (48)I Zm n C xx (2m-l)2(2n-1) 2 + G xy (a/t)2(2n-l 4  48

All other components of aij are zero.

The effective stiffness matrix for a [0q/90rls laminate under in-plane

biaxial tensile loading becomes

I qCLL + r(1- 2 )CTT [q(1-4 1) + r]CLT

[cij = [q+r(l- 2)1CLT q(1- 1)CTT + r CLL (49)

where

I C C(50)C yC zz -C yz 4

det[Cij] - C xx

The comparisons illustrated in Fig. 25 and Fig. 26 verify that the

present model gives a fairly accurate prediction of the degraded axial

stiffness as a function of the crack density for two commonly used material

systems. Furthermore, it should be noticed that the crack density (number of

cracks per unit length) is not appropriate for representing the matrix crack

characteristics. As an example, consider [On/9 0 n's specimens. If the crack

density is utilized as an independent parameter, the normalized stiffnesses of

[0/90 s and [
02/9021s will be different at the same crack density as shown in

Figs. 7-a and 7-b. This violates the most important assumption in continuum

mechanics, i.e., observable state variable are independent of the size of the

domain of interest. On the contrary, the ratio of the crack length to the

distance between two adjacent cracks, t/a, eliminates this inconsistency as

illustrated in the same figures.

The analytical solution to the crack parameter, C2' includes the crack

interaction in an explicit form. Furthermore, the internal state variable,

axx, results directly from the strain energy loss due to matrix cracks [81.

By combining the present problem solving technique with the study of Allen, et

al. 181, the strain energy release rate at a given matrix crack damage state

can be predicted analytically. However, the internal state variable presented

49I
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herein may not be exact under the following conditions.

(1) When the matrix crack size and spacing cannot be assumed to be

I homogeneous.

(2) When the matrix material is viscoelastic.

(3) When the matrix cracks are dominated by microcracks rather than by those

that cross the entire specimen width.I
2.8 Determination of Ply Level Stresses

It is ger-,ally hypothesized that the growth of damage is driven by local

stresses, which are in turn affected by the damage process. Therefore,

although damage may not profoundly affect stiffness, it cannot be ignored in

m the prediction of failure.

In this section, the model is used to predict the effects of both matrix

cracks and delaminations on ply level stresses. It is shown that the stress

distribution is substantially altered by the damage state. Furthermore, the

predicted stresses are significantly affected by stacking sequence. The

outcome of the research is to show how the development of damage causes stress

redistribution which drives the development of new damage modes.

It is assumed that the effects of matrix cracking are reflected in the

I ply level stress-strain relations [91:

OLx Q11 Q12 Q13 Q14 Q15 Q16  Lx - axx

I Q12 Q22 Q23 Q24 Q25 Q26  L - yy (51)

0 L0
j 0L >= Q13  Q23 Q33  Q34 Q35  Q36  -L zz

1L Ql4 Q24 Q34 Q44 Q45 Q46 YL

Lxz Q15 Q25 Q35 Q45 Q55 Q56 xz

Lxy _916 Q26 Q36 Q46 Q56 Q66 - YLxy - xy

where the locally averaged strains are given byI
I
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e = L - z [I + H(z-zi) , i] + H(z-zi) %3
L x Lx Lx 53

E L Ly - z [ICL + H(z-zi) CL D ] + H (z-zi) 2i
Ly y Ly 2

SEL + H(z-zi) CL1i

0 o
EL C - z [IC + H(z-z) a D]
Lyz L yz L yz 1 4

E L - Z [L + H(z-zi) a D5

Lxz Lxz xz

e 0 (52)
m xy Lxy Lxy

The observable quantities on the right hand side of the above equations

are the midsurface strains, e0j. and rotations, Lj These quantities

normally come from the solution of the associated boundary value problem, as

described in Section 2.10. The internal state variables are obtained from

evolution laws of the general form

i= * J(Ek T i M D

m and

&D = & T, M 9,) (54)

Thus, equations (51) may be utilized to evaluate the "far-field" damage

dependent stresses in each ply.

A computer code has been constructed to determine the effect of damage on

the "far field" ply stresses in composite laminates. Results presented are

for a given laminate strain e = .01 (all other strains assumed to be

zero). Damage variables have been calculated for matrix cracks in a

saturated damage state assuming u = .0001". The off-axis and 900 plies use

the matrix crack damage terms of 8 and a2 , respectively. No damage is

assumed in the 00 plies. Since the laminate is subjected only to cxo, 0 is

assumed to be the only delamination damage component. This term is calculated

for an equivalent delamination area with u0 = .00001".

I0
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UThe results obtained from the model are shown in Table 1 and Figs. 27 and

28. As evidenced from the result, the damage significantly affects the far-

field ply stresses. Matrix cracks have a significant effect on ply stresses

in the 900 plies in cross-ply laminates. The largest number of matrix cracks

is evident in the 900 plies of the [02/9021s laminate resulting in a thirty-

four percent far-field ply stress reduction. The two quasi-isotropic

laminates develop different damage resulting in dissimilar far-field ply

stresses. The [90/±45/0]s laminate exhibit little matrix cracking and

corresponding reduction of ply stress in both 900 and ±45 plies. The

[0/±45/901 laminate exhibit a similar stress reduction in the ±450 plies, but

shows a substantial stress reduction (fifteen percent verses one percent) in

Ithe 900 plies when compared to the [90/±45/0]s laminate. It should be noticed

that only the stresses in plies between delaminations are affected by the

delamination. This is a result of symmetric delamination damage about the

midplane of the laminate. For this damage state, the resulting a terms are

equal in magnitude, yet opposite in sign. It is apparent that for fixed

strain and a symmetric damage state, the laminate strains are affected only in

the region between the delaminations. The matrix cracks are shown to alter

the constitutive nature of the plies, and delamination effects are

incorporated into the laminate through the laminate equations. This

alteration in ply stresses will significantly affect the growth of new damage

in the composite.

Results of this work illustrate that the stress state in the laminate is

substantially influenced by damage. In the 102/9021s laminate, matrix cracks

and delaminations reduce the stress in the 900 plies by almost sixty

percent. For cross-ply laminates, the damage induced ply stress reduction

varies from about forty to sixty percent of undamaged stress in the 900

plies. Stress reduction in angle-ply laminates is less dramatic (depending on

location and size of the delamination). This alteration in stress state is

critical in determining both the magnitude and location of damage development.

2.9 Development of Damage Evolution Laws

m The prediction of damage evolution can be likened to the development of

equations predicting S-N curves in metals (such as Miner's rule 1181).

However, in the case of laminated composites, this phenomenological approach
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Table 1. PLY STRESSES RESULTING FROM MATRIX
CRACKING AND DELAMINATION

I
LAMINATE PLY INITIAL STRESS STRESS DELAMINATION MATRIX

PLY STRESS W/MATRIX W/MATRIX LOCATION AND DAMAGE
o (ksi) CRACKS CRACKS & MAGNITUDE VARIABLES

DELAM. 0 M M
a (ksi) o (ksi) 3 2 8

10/90} s  0 211.4 211.4 211.4 0/90 0 0
90 14.0 9.6 8.5 16.6% .00318 0

.00076

I 10/9021s 0 211.4 211.4 211.4 0/90 0 0
90 14.0 9.5 7.9 24.2% .00326 0
90 14.0 9.5 7.9 .001109 .00326 0

102/9021 s  0 211.4 211.4 211.4 0 0
0 211.4 211.4 211.4 0/90 0 0

90 14.0 9.2 6.0 49.5% .00344 0
90 14.0 9.2 6.0 .002267 .00344 0

[0/9031 s  0 211.4 211.4 211.4 0 0
90 14.0 10.6 8.3 0/90 .00247 0

90 14.0 10.6 8.3 35.3% .00247 0
90 14.0 10.6 8.3 .001617 .00247 0

I 0/±45/90]s  0 211.4 211.4 211.4 0 0
45 64.4 64.0 64.0 -45/90 0 .00067

-45 64.4 64.0 64.0 57% 0 -.00067
90 14.0 11.8 8.2 .002611 .00157 0

190/±45/0]s  90 14.0 13.9 13.9 .00060 0
+45 64.4 64.0 64.0 +45/-45 0 .00067
-45 64.4 64.0 48.7 52% 0 -.00067
0 211.4 211.4 161.0 .002382 0 0

I
I
I
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possesses the distinct disadvantage that a new evolution law must be

hypothesized for each stacking sequence because there is no underlying

physical interpretation of the mechanics in the problem. The current model is

independent of stacking sequence because it utilizes the damage parameters in

each ply to determine the far-field ply stresses In each ply, so that damage

evolution in each ply depends directly only on the state within that ply.

Thus, the effects of adjacent plies are accounted for via the dependence of

the ply stresses on stacking sequence as reflected in the laminate equations.

Since the ply stresses determined by this procedure represent locally

averaged values, they must be considered to be far-field stresses, so that

equations (53) and (54) may more properly be written:

*M M M D KI, KI  ) (55)Iij =ij (ek, , , , kL KII I(

and

S.D .D Ti O KI. KI  ) (56)i - aj(ekL' , akL, akL', KII, II11

where KI, KII, and KIII are the stress intensity factors, which relate the

far-field stresses to the crack tip stresses for a given crack geometry.

However, it Is assumed that the geometry of both matrix cracking and

delaminations is sufficiently independent of stacking sequence that the stress

intensity factors may be treated as "material properties" and thus possess the

same stress intensity factor dependence for all stacking sequences. Thus, they

are encompassed implicitly in the material constants required to characterize

damage evolution laws (55) and (56).

3 It is important to note that the above equations are independent of

stacking sequence. Thus, the growth of matrix crack damage in each ply

depends explicitly only on the stresses In the plies immediately above and

below the delamination. Therefore, It can be seen that equations (55) and

(56) can be developed generically from a single [0,90,01 specimen (or any

other layup), and the same damage evolution law will apply to every ply in a

complex stacking sequence. The rate of growth of damage will depend only on

m the stresses determined In each ply by equations (55). Herein lies the most

important aspect of the current model: it may be characterized using simple

m layups and then applied to any other stacking sequence.
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Several first generation evolution laws have already been proposed in the

literature for matrix cracks [19-211 and these are being incorporated into the

model in order to obtain a precise form for equations (55). Furthermore,

O'Brien [121 has proposed some evolution laws for delamination, and these are

m being considered for equations (56).

The tensorial nature of equations (55) and (56) poses some difficulties

since uniaxial testing will produce only scalar forms of these equations.

Therefore, we are seeking to obtain constraints on the tensorial nature of

these laws (not unlike Drucker's postulate for plastic strain [221).

Accordingly, we have determined that under isothermal conditions

ah ltj a 0 (5 .7)

ij

follows from the second law of thermodynamics. We are now seeking to show

that h is a stable damage potential not unlike that proposed in the damage

models of Dragon and Mroz [231 and Krajcinovic and Fonseka [241 for geologic

media. If such can be shown then significant constraints can be applied, so

that the tensorlal nature of equations (55) and (56) can be identified from

uniaxial tests.

I
2.10 Finite Element Plate Computer Code

In order to develop the capability to analyze structural components with

spatially variable stresses such as plates with holes, equations (42) and (43)

have been incorporated in a plate finite element computer code. The

formulation of the governing differential equations for a laminated composite

with damage follows the same procedure as that used for the formulation for a

laminated composite plate with no damage [251. The difference between the two

formulations becomes apparent when the constitutive displacement equations are

examined. To see how these changes affect the overall formulation, first

m consider the equilibrium equations for a plate.

ax+ ay = Px 
(58)

ax ay x

ax + ay = Py 
(59)I
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+ 2 +:twi +-P

ax2 axay 3y2 (

It is now advantageous to express equations (42) and (43) in matrix form.

{N} = [Al {eo} + [B] {"L} + {fM} + {fD} (61)

{M} = [B1 {co} + [DI {(cL} + {gM} + {g D (62)

I where

n
J AI I (zk - Zkl1) 'Q11k (63)

k= 1I
1n 2 2

[B] = yI(zk Z k-1) 11k (64)Ik=1
[1l= . n (Zk Z3_) 1~ 1  (65)

k=1 1 Q1

I n zk)
(fM = I (zk  Zk1 ) Q21k { )k (66)

k=1

(gM) , n ~ (Z2 _ Zl 12_ k ~M (67)

I{fo : t  I 11 i + i zi-1 ['2i Li(8
I d+1

{g i 'fD1i = d1 (zi  - ) [ 02 i (69)

In order to simplify the formulation of the finite element model

considerably, it is expedient to consider the special case of symmetric

laminates. Making this assumption effectively sets the [BI matrix equal to
zero, resulting in a decoupling of the in-plane and out-of-plane laminate
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equations. Since all laminates are not symmeric, later work will be involved

in the incorporation of the [B] matrix into the formulation.

Substituting equation (61) into equations (58) and (59) results in the

governing differential equations for the in-plane deformations of the plate:

a2uo ~ 2 a2vo2o
A L LL+ + I11 ax2  + A16  (A12 + A66 ) a + A26 ay2

2 o a2vo
auL + A (f+ '+ 66 2y +1A6 2ax 11

ay ax a

I+ (fM + f)= - PX (70)

2 2o 20 2 o 2 oaLa uO a v L+A a vLA A16 ax2 + (A12 + A66)  L + 2 A L26 a + A22 ay2

'uL lv -(f!+ l))S 26 ay 66 ax 2 - + 3

x (f + fy ) = ay (71)

ay 2

m Similarly, substituting equation (62) into equation (60) results in the

governing differential equation for the out-of-plane deformations.

a w0 2 o a4o

D1 a4 +4116 w + 2 (D1 + 2 D66 )+ a4  a L - a g+-"0

l +4-D26 axaY 3  22 aY4  ax2  1

ay ax ax 3 3
Integrating the governing differential equations, (70), (71) and (72)

against a test function and employing Green's Theorem results in the weak

formulation of the laminated plate equilibrium equaitons. Equilibrium in the

x-direction is given by:
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f a(6U 0 a(6v) 0~ ~ Xr6~ NfxNy

e x 1 a 2f6 (Nn +N Yn ) dr

a ( f M + D v) fM+ fD )] dydx (73)

e ax ( 1 + 1) ay ( 3 + 3i

where

P 1 au0  avL auo L L
=A +'+ -A -+ A L(4
ax 12 ay 16aBy 16 ax

au0  a auo avL 75

P2  16 ax A26 ay 6a 6a

Equilibrium in the y-direction is given by

_____)p a(6voL) Idd vON n +Nn

e ax 2 a~ P3 }dxfv~n ren~ dryx

f(6v ) a(6v+fD +! ) fM + Dj yx(6

Qe ax 3 f 3) ay ( 2  2 yd

* where
a av0  au0  av0

P +A A -+ A (77)I3 12 ax A22 ay+A 26 ay 26 ax

Equilibrium in the z-direction is given by:

32(6wo) +a2 (6w) a2 (6wo)

ax2 L 4 + aY2 L)P 5 +2 a-xay P6} dxdy

-f6wo p dydx + f 6w 0( Qn
e z r e LQ x xQ)d

a(6WOL) a(6w 0

-f ax (Mn+M n )+-F-)(xn + Myny) dr

re ax xx Y
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+fIa 2 (6w0L) gM + 2(g0) gM +0

32 0
I e ax2 a 6 y2

+(gL +D dxdy (78)

where a2wo a2wa 2 2o

4 Dll 2x 12 D Y2 ' 16 axayIax

a 2w oa2 2 wLo
w +w 2 D (80)

1P=  2 ax 2 22 2 026 axay

I 2w a2wo 2 o6

P = - +_ (81)
6 16 ax-2 26 y 2 66 axayI 3

In equations (73), (75) and (78), ae represents the element area

and r e represents the external boundary of the element.

It is assumed in the formulation of this finite element model that a

total of five degrees of freedom exist at each node. The components of

deformation at a node, k, consist of two in-plane
displacements, u and v , one out-of-plane displacement, w , and two

rotational terms ex and ey . The rotations can be described as the slope of

the normal to the mid-plane after deformation and are described in terms of

the out-of-plane displacement by:

I 3w0

ek ay (82)

aw
0

8y L (83)

The following displacement fields are assumed to represent the components

of deformation within the element:

I L m e (84)I= J J
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I 0 m e V! (85)m V~L == j vj

3o e_ 6e (86)II  o k=1

where {s} = {wj, e', e }, *j and *e represent the shape functions for the

element, m is the number of nodes the element contains and p is three times
the number of nodes.

I Also,

6u= i = 1, ...,m (87)

60  eu=i = 1, '**,m (88)

6U o = k = 1, -. p (89)

Substitution of equations (84)-(89) into the weak formulation of the

plate equilibrium equations, (73), (76), and (78) results in the following

system of equations:[ K1  0 u FA 1M Fr
IK21 K22 0J v (90)2 F

I O 0 K33  6 F3 F F3

5m x 5m 5m x I 5m x 1 5m x 1 5m x 1

where the [K matrix is the standard linear stiffness matrix, (FA) is the

external forcing function, and {FM] and {FD] are pseudo - force vectors
resulting from matrix cracks and delaminations, respectively. Assembly of the

above element equations into a global set may be accomplished in the standard

way.

I
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I Preliminary results have been obtained with the finite element code for

the (O/90]s tapered specimen shown in Fig. 29. The specimen was loaded to

produce the damage state shown in Fig. 30, and the code was utilized to

simulate the response of the specimen. The code produced a prediction of the

axial stiffness loss which compares well with the experiment. More

importantly, the computer code produced predictions for the stress components

(as a function of damage) in the 90 degree plies, as shown in Figs. 31 and

32. Since these stresses cannot be practically obtained experimentally, no

comparison is available. However, the close agreement between the predicted

and experimentally observed strains lends support to the contention that the

stress predictions are also believable. Further test cases, such as a plate

with a circular cutout, are now being investigated with the computer code.

2.11 Conclusion

It is now well known that laminated composite structures undergo

l substantial microstructural damage which is both load history and stacking

sequence dependent. Because this damage ultimately may lead to component

failure, it is essential to develop a model capable of predicting component

response in the presence of damage in order to design away from failure. If

this can be achieved, then structures can be designed to operate with non-
catastrophic damage (just as metals are allowed to yield) and thus achieve
greater design efficiency.

m Toward the goal of achieving such a model, the author has proposed a

particular methodology within the framework of continuum damage mechanics.

This methodology is supported by the following framework: 1) development of a

physically based set of internal state variables representing damage (Section

2.3); 2) construction of a set of stress-strain-damage constitutive equations

(Section 2.3); 3) integration of the model in a lamination scheme which

accounts for interply delamination (Section 2.4); 4) application of the

procedure to calculate "far-field" damage dependent ply stresses (Section

2.8); 5) development of damage evolution laws (Section 2.9); 6) construction

3 of an analytical procedure for predicting the response of structural

components (Section 2.10); and 7) development of a failure function.

m While this author will be the first to admit that the results given

herein do not fulfill all of the steps outlined above, substantial progress

I
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m has been made. Steps 1 through 4 and 6 are complete at this time, and step 5

is well underway. More importantly, the groundwork has been properly laid for

a "mechanistic" approach to step 7. For example, the model is capable of

predicting ply level stresses in the presence of damage regardless of the

laminate stacking sequence and for any load history. So far as this author is

aware, no other currently available analytical technique possesses this

capability. In short, it is believed by this author that the basic features

are now in place for predicting the response of damaged laminated composite

m structural components.

The ultimate goal of this research is to develop a model capable of

predicting failure of a component subjected to loads resulting in stress

gradients. Toward this end, the essential ingredients are now available in

the current model for constructing a failure criterion which describes fiber

fracture as a function of matrix cracking and delamination.

II
I
I
I
I
I
m
I
I
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Damage Model for Continuous Fiber Composite Laminates with Matrix Cracking

and Interply Delaminations," Composite Materials: Testing and Design (8th

Conference, ASTM STP 972, J.D. Whitcomb, Ed., American Society for Testing

and Materials, pp. 57-79, 1988 (Appendix 7.3).

m 6. Harris, C.E., Allen, D.H., Nottorf, E.W., and Groves, S.E., "Modelling

Stiffness Loss in Quasi-Isotropic Laminates Due to Microstructural

Damage," Journal of Engineering Materials Technology, American Society of

Mechanical Engineers, Vol. 110, No. 2, pp. 128-133, 1988 (Appendix 7.4).
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7. Harris, C.E. and Allen, D.H. "A Continuum Damage Model of Fatigue-Induced

Damage in Laminated Composites," to appear in Encyclopedia of Composites,

1988 (Appendix 7.5).I

3.2 Conference Proceedings

1. Allen, D.H., Harris, C.E., and Groves, S.E., "Damage Modelling in

Laminated Composites," Proceedings IUTAM/ICM Symposium on Yielding, Damage

and Failure of Anisotropic Solids, Grenoble, France, 1987 (peer reviewed -

m Appendix 7.6).

2. Harris, C.E., Allen, D.H., and Nottorf, E.W., "Damaged Induced Changes in

the Poisson's Ratio of Cross-Ply Laminates: An Application of a Continuum

Damage Mechanics Model for Laminated Composites," Damage Mechanics in

Composites, A.S.D. Wang and G.K. Haritos, Eds., American Society of

Mechanical Engineers, AD-Vol. 12, pp. 17-24, 1987 (also submitted to

Journal of Composites Technology and Research - Appendix 7.7).

3. Allen, D.H., Nottorf, E.W., and Harris, C.E., "Effect of Microstructural

Damage on Ply Stresses in Laminated Composites," Proceedings ASME Winter

Annual Meeting, Chicago, 1988 (to appear - Appendix 7.8).

I 3.3 Chapters in Textbooks

1. Allen, D.H. and Harris, C.E., "A Damage Dependent Constitutive Model for

Laminated Composites," Mechanical Behaviour of Materials, A. Aladjem, Ed.,

Freund Publishing, Tel Aviv, 1988 (Appendix 7.9).
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3.4 Papers in Review

1. Lee, J.W., Allen, D.H., and Harris, C.E., "Internal State Variable

Approach for Predicting Stiffness Reductions in Fibrous Laminated

Composites with Matrix Cracks," submitted to Journal of Composite

Materials, 1988 (Appendix 7.10).

U 3.5 Future Papers

I We expect perhaps three additional papers to result from the theses

discussed in Section 4.2.I
4. GRADUATE RESEARCH ASSISTANT ACTIVITIES

4.1 Degrees Completed

1. R.G. Norvell - M.S., August, 1985.

2. S.E. Groves - Ph.D., December, 1986.

3. I.T. Georgiou - M.S., December, 1986.

4. D. Lo - M.S., August, 1988 (expected).

5. K. Buie - M.S., July, 1988.

6. E.W. Nottorf - Ph.D., September, 1988 (expected).

I
I
I
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4.2 Thesis Abstracts

I ABSTRACT

A Study of Damage Mechanics in Continuous Fiber Composite

Laminates with Matrix Cracking and Internal Delaminations

I Scott Eric Groves, B.S., Texas A&M University;

M.S., Virginia Polytechnic Institute

Chairman of Advisory Committee: Dr. David H. Allen

m A cumulative damage model for predicting the stiffness loss in cross-ply

graphite/epoxy laminates is obtained by applying a thermomechanical

constitutive theory for elastic composites with distributed damage. The model

proceeds from a continuum mechanics and thermodynamics approach wherein the

distributed damage is characterized by a set of second order tensor valued

internal state variables. The internal state variables represent globally

averaged measures of matrix cracking and internal delaminations. The

resulting model represents a set of damage dependent laminate plate

equations. These are developed by modifying the classical Kirchhoff plate

theory. The effect of internal delamination enters the formulation through

modifications of the Kirchhoff displacements. The corresponding internal

state variable is defined utilizing the kinematics of the internal delaminated

region and the divergence theorem. This internal state variable represents

the components of the out-of-plane displacement modes created by the

delamination. A local anisotropic stiffness is then defined to couple these

out-of-plane displacements with the in-plane forces. The effect of the matrix

cracking enters the formulation through alteration in the individual lamina

constitution. The internal state variable is related to the surface area of

delamination by employing linear elastic fracture mechanics. This leads to a

relation between the strain energy release rate and the internal state

variable. Thus, as long as the strain energy release rate can be defined, the

model is applicable of predicting the response of general laminate plate

behavior. The model is demonstrated by predicting the relative axial

stiffness loss due to internal delamination in cross-ply laminates with very

good results.

I
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-- ABSTRACT

Initiation Mechanisms and Fatigue Growth of Internal Delaminations

in Graphite/Epoxy Cross-Ply Laminates. (December (1986)

loannis Theodorou Georgiou, B.S., Aerospace Engineering Texas A&M University

Co-Chairmen of Advisory Committee: Dr. C.E. Harris

Dr. D.H. Allen

An experimental investigation has documented the initiation and growth of

internal delaminations in laminated fiber-reinforced composites made of

I AS4/3502 graphite/epoxy. Cross-ply laminates of the general type (On/90m)s
were subjected to a tension-tension cyclic load at 2.0 Hz and R=O.1 to develop

internal delaminations. Isolation of internal delaminations from other major

matrix fracture phenomena was the main reason for selecting cross-ply

* laminates for this study.

The X-ray radiography nondestructive method was used to record the

internal delaminations at specified load cycles. In addition, Scanning

I Electron Microscopy was used to examine the damage state in the interior of

the laminates. Also, the residual mechanical properties Exx and vyx were

measured at the cycles where the damage was recorded.

The experimental results were interpreted by using force and moment

equilibrium conditions and compatibility of deformations. The conditions

leading to the fracture phenomenon of internal delaminations were

delineated. The factors leading to distinct patterns of internal delamination

initiation and growth were identified.
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U ABSTRACT

I An Investigation of Damage Accumulation in

Graphite/Epoxy Laminates. (August 1985)

Robert Gerald Norvell, B.S., Texas A&M University

Co-Chairmen of Advisory Committee: Dr. David H. Allen

Dr. Richard A. Schapery

i The objective of this investigation has been to identify the mechanisms

of initiation and growth of matrix cracks in graphite/epoxy laminates and to

identify the effect of matrix cracking on material response. An extensive

experimental data base was produced for use in the development of a damage

model and for model verification.

An as yet unreported form of transverse cracking has been observed. Two

distinct forms of transverse cracks were found, each clearly having its own

mechanisms of initiation and growth. Subsequent damage modes associated with

transverse cracks, such as longitudinal splitting and delamination, also

developed separate forms corresponding to the transverse crack variations.

7
i
I
I
I
I
I
I

79

I



I

I i .ABSTRACT

An Investigation Into the Effects of Damage on the

I Stresses in a Composite Laminate. (December 1988)

Eric Walter Nottorf, B. S. Aeronautical and Astronautical Engineering,

Purdue University, M. S. Aerospace Engineering, Texas A & M University.

Co-Chairmen of Advisory Committee: Dr. D. H. Allen and Dr. C. E. Harrris

A general constitutive framework for composite laminates with damage is

reviewed. This constitutive framework is based on continuum damage

* mechanics with constraints imposed by thermodynamics.

Factors that effect the ply stresses and thus delamination initiation and

I growth in composite laminates are investigated and presented within. It is

postulated that adjacient ply "effective stresses" are crucial in influencing the

initiation and growth of delaminations in composite laminates. In particular,

adjacient ply normal stresses have been used in the determination and

postulated growth of delaminations.

A method for determining the "effective stresses" in the adjacient plies is

presented along with calculated stress changes due to various types of damage.

The specific damage is incorporated into the model by two tensor-valued

internal state variables for both matrix cracking and delaminations,

respectively.

Along with this stress calculation method, a general framework for the

determination of delamination initiation and growth using the concepts of

I fracture mechanics and stress states is presented.

I
I
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I Abstract

I A Matrix Crack Damage Accumulation

Model for Laminated Composites

David C. Lo, B.S., Texas A&M University

I Directed by: Drs. D.H. Allen and C.E. Harris

I A damage accumulation relationship in the framework of Continuum Damage Mechan-

ics is proposed for the growth of matrix cracks in brittle-elastic continuous fiber reinforced

laminated composites. The effects of the matrix cracks are represented by the local volume

average of the diadic product of the crack opening displacement vector and the crack face

normal. The local volume under consideration is assumed to be statistically homogeneous.

I The concept of flow potentials are adopted to determine the lamina damage evolution

equations. The stability of the matrix crack growth, when viewed from the level of the

local volume, is assumed in the formulation.

* The damage evolution equations are incorporated into a continuum damage model for

laminated composites. This model takes the form of laminate analysis equations modified

by internal state variables. Stacking sequence independence is exhibited by the damage

evolution equations because the local ply response, used in the equations, reflects the global

laminate behavior through averaging over the entire laminate thickness. The model is

then implemented in a laminate analysis computer code. Model predictions are compared

with published experimental data for graphite/epoxy laminates with different stacking

sequences. The ability of the model to account for the effects of adjacent ply constraints

and damage interaction by global averaging is examined. Finally, further developments for

I this damage accumulation relationship are discussed.

I
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I ABSTRACT

I A Finite Element Model for Laminated Composite Plates

with Matrix Cracks and Delaminations. (December 1988)

Kevin Daniel Buie, B.S., Texas A&M University

Chair of Advisory Committee: Dr. David H. Allen

* A finite element model is developed herein for the analysis of

laminated composite plates experiencing microstructural damage in the

forms of matrix cracking and interply delaminations. The idea of

representing the formation of damage within a laminated composite

plate with strain-like internal state variables is utilized to obtain

the weak form of the equilibrium equations. From these equations the

necessary stiffness and force matrices are formulated for the three

node, fifteen degree of freedom triangular element used by the model.

A FORTRAN program capable of predicting the response of symmetric

laminated composite plates, having the same lamina material

properties, to any combination of force and moment loadings is

generated from the finite element model. Finally, the program is

* used to examine the effects of matrix cracking and delamination on

the lamina stresses in two example cases.

II
I
I
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5.0 PROFESSIONAL PERSONNEL INFORMATION

I5.1 Faculty Research Assignments
I

1. Dr. D.H. Allen (Co-principal Investigator) - overall program coordination;

development of stiffness relationships; construction of ISV growth laws;

mechanical testing.

2. Dr. C.E. Harris (Co-principal Investigator) - overall experimental

coordination; mechanical testing; nondestructive evaluation; stiffness

modelling; fracture mechanics (now Branch Head, Fatigue and Fracture

Branch, NASA Langley Research Center).I
5.2 Additional Staff and Students

1. Ms. C. Rice (Secretary) - secretarial support.

2. Mr. S.E. Groves (Lecturer, Research Assistant, and Ph.D. Candidate) - ISV

m growth laws; laminate analysis; finite element modelling; mechanical

testing (completed Ph.D., December, 1986 - now at Lawrence Livermore

m Labs).

3. Mr. I. Georgiou (Research Assistant and M.S. Candidate) - mechanical

testing; nondestructive evaluation; ISV growth laws (completed M.S.,

December, 1986 - now Ph.D. candidate at Purdue University).

4. Mr. E.W. Nottorf (Research Assistant and Ph.D. candidate) - modelling of

l stiffness loss; mechanical testing.

5. Mr. David Lo (Research Assistant and M.S. Candidate) - ISV growth laws.

6. Mr. Kevin Buie (Research Assistant and M.S. Candidate) - modelling

combined damage modes (completed M.S., July, 1988).
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7. Mr. C. Fredericksen (Lab Technician) - experimental lab support.

U 8. Mr. R.G. Norvell (Research Assistant and M.S. Candidate) - experimental

damage observation (now at General Dynamics - Fort Worth).

6.0 INTERACTIONS

6.1 Papers Presented

6.1.1 Conference Presentations

1. S.E. Groves, D.H. Allen, and C.E. Harris, "A Cumulative Damage Model for

Continuous Fiber Composite Laminates with Matrix Cracking and Interply

Delaminations," American Society for Testing and Materials Conference,

Charleston, S.C., April, 1986.

2. D.H. Allen, C.E. Harris, S.E. Groves, and R.G. Norvell, "Characterization

of Stiffness Loss in Cross-ply Laminates with Curved Matrix Cracks," Third

Japan - United States Conference on Composite Materials, Tokyo, June,

1986.

3. C.E. Harris and D.H. Allen, "The Application of Fracture Mechanics to

Specify the Internal State Variable for Matrix Crack Damage in Laminated

Composites," 23rd Annual Meeting of the Society of Engineering Science,

Buffalo, August, 1986.

4. Allen, D.H., Groves, S.E., and Schapery R.A., "A Damage Model for

Continuous Fiber Composite," Society of Engineering Science 21st Annual

Meeting, Blacksburg, VA, October, 1984.

5. Allen, D.H., Groves, S.E., and Schapery, R.A., "A Damage Model for

Continuous Fiber Composites," Tenth Annual Composites Review, Dayton,

October, 1984 (Invited).
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6. Allen, D.H., Harris, C.E., Norvell, R.G., and Groves, S.E., "Modelling of

Stiffness Reduction Due to Matrix Cracks in Graphite/Epoxy Laminates,"

Society of Engineering Science 22nd Annual Meeting, State College, PA,

October, 1985 (Invited).

7. Allen, D.H., Harris, C.E., and Groves, S.E., "Damage Modelling in

Laminated Composites," IUTAM/ICM Symposium on Yielding, Damage and Failure

in Anisotropic Solids, Grenoble, France, August, 1987 (Invited).

8. Harris, C.E., Allen, D.H., Nottorf, E.W., and Groves, S.E., "Modelling

Stiffness Loss in Quasi-Isotropic Laminated Composites Due to

Microstructural Damage," ASME Winter Annual Meeting, Boston, December,

1987 (Invited).I
9. Harris, C.E., Allen, D.H., and Nottorf, E.W., "Damage-Induced Changes in

m the Poisson's Ratio of Cross-Ply Laminates: An Application of a Continuum

Damage Mechanics Model for Laminated Composites," ASME Winter Annual

Meeting, Boston, December, 1987.

10. Allen, D.H., Nottorf, E.W., and Harris, C.E., "Effect of Microstructural

m Damage on Ply Stresses in Laminated Composites," ASME Winter Annual

Meeting, Chicago, December, 1988.i
6.1.2 Invited Lectures

1. Damage Modelling in Laminated Composites," Technical University of

Denmark, Lyngby, Denmark, September, 1987.

2. "Modelling Damage in Composites," Lawrence Livermore National Labs, July,

1988.
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A THERMOMECHANICAL CONSTITUTIVE THEORY FOR ELASTIC

COMPOSITES WITH DISTRIBUTED DAMAGE

PART 1: Theoretical Development

U by

D.H. Allen
C.E. Harris

Aerospace Engineering Department
Texas A&M University

College Station, Texas 77843

*and

S.E. Groves

ILawrence Livermore Laboratories
Livermore, CA 94550

IABSTRACT
A continuum mechanics approach is utilized herein to

develop a model for predicting the thermomechanical constitution

of elastic composites subjected to both monotonic and cyclic
fatigue loading. In this model the damage is characterized by a
set of second order tensor valued internal state variables

representing locally averaged measures of specific damage states
such as matrix cracks, fiber-matrix debonding, interlaminar
cracking, or any other damage state. Locally averaged history

dependent constitutive equations are posed utilizing constraints
imposed from thermodynamics with internal state variables.

In Part I the thermodynamics with internal state
variables is constructed and it is shown that suitable

definitions of the locally averaged field variables will lead to
useful thermodynamic constraints on a local scale containing
statistically homogeneous damage. Based on this result the

Helmholtz free energy is then expanded in a Taylor series
in terms of strain, temperature, and the internal state variables
to obtain the stress-strain relation for composites with damage.
In Part II the three dimensional tensor equations developed in
Part I are simplified using material symmetry constraints and are

written in engineering notation. The resulting constitutive
model is then cast Into laminate equations and an example problemI0
is solved and compared to experimental results.

It is concluded that although the model requires further
dand extensive experimental verification It may be aIdevelopment n rmn tmyb
useful tool in characterizing the thermomechanical constitutive
behavior of continuous fiber composites with damage.

I
I



INTRODUCTION

A model for predicting the effect of microstructural damage
on the constitutive behavior of continuous fiber-reinforced
laminated composites Is presented in this two part paper. In
Part I, the general model is developed from a theoretical
treatment of damage mechanics using continuum mechanics and

thermodynamic principles. In Part II, the constitutive model is
specialized for the case of matrix crack damage confined to the
900 plies of cross-ply laminates. Predicted values of the
damage-degraded axial modulus of cross-ply laminates with a
variety of stacking sequences are compared to experimental
values.

While the motivation for the research is to model laminated
composites, the general model formulated in Part I is applicable
to a broad class of media. Therefore, the following literature
review discusses the general field of damage mechanics, whereas

developments specifically related to laminated composites are
discussed in more detail in the introduction to Part II.

The research fields of fracture mechanics and damage
mechanics are often related and in some cases contain

significant commonality. For the purpose of the current research
we define fracture mechanics to be that branch of mechanics
wherein a crack is treated as a boundary of the body of interest,
whereas damage mechanics is considered to be that branch of
mechanics wherein the effects of cracks are included in
constitutive equations rather than in boundary conditions. The
usefulness of damage mechanics is apparent when one considers a
body containing numerous microcracks for which an exact analytic
solution is often untenable. Since, in many cases internal
cracking is noncatastrophic, it is pragmatic to consider the
locally averaged effect of the cracks on the response of the
body. This approach was first utilized by Kachanov in 1959 [1].

Since that time the field of damage mechanics has grown rapidly
to the current state nf development [2]. However, the
predominant body of research to date has centered on the
application of the method to statistically isotropic media.

M Icrocrack damage has been observed in a wide variety of
media, including metals (3], concrete [4], geologic media [5],
and composites [6-12]. The significance of this damage lies in
the fact that numerous global material properties such as

stiffness, damping and residual strength may be substantially
altered during the life of the component, as shown in Fig. 1

(13).
I [ Attempts to model damage initially were somewhat

phenomenological in nature (1,3]. However, considerable research
has shown that this approach can often be justified by
micromechanics (14-18] for initally isotropic materials [2].
Fracture based concepts have recently been utilized to model

damage development (19-22). Although the first of these studies
I (19] contains a general theory which may be applied to fibrous

composites, it has so far only been utilized for quasi-isotropic
random particulate composites such as solid rocket propellant
[20), and as such has not been applied to continuous fiber
composites. The theory in the latter two (21,22] has been
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E utilized to develop fatigue matrix crack growth laws for
laminated composites. Kachanov's technique [1] has also been
applied to fibrous composites (23] and although promising results
were obtained, the model was utilized in uniaxial form only.

The concept of damage as an internal state variable has been
previously utilized in continuum mechanics/thermodynamics based

theories for crystalline and/or brittle materials [24-31], as
well as for nonlinear viscoelastic materials [18]. A study has

been made of the effect of vector-valued damage parameters en

various compliance terms [32], and this methodology is currently
undergoing further development (33, 34].

The foregoing discussion indicates that important progress
has been made in characterizing damage in a variety of media.
However, with a few notable exceptions (16,21-23,25,35-38],

applications have been made only to initially isotropic media.
Therefore, it is the contention of these authors that substantial
and continued research is warranted to develop a model of damage
in laminated continuous fiber composites. In this paper an

attempt will be made to utilize many of the concepts embodied in
the previously referenced research efforts .o develop a

I thermomechanical constitutive model for damage in composites
which is rigorously based in continuum mechanics/thermodynamics
and is generic with regard to material type, load spectrum, and
specimen geometry.

The model will utilize the concept of a local volume element
with statistically homogeneous damage to construct constitutive
equations relating stress, strain, and damage. Unlike methods

which model the local volume analytically (called

microcmechanics), the current research will model the local
volume element experimentally (called phenomenological). The
model will therefore not be restricted to linear elastic media
with homogeneous elastic properties. Furthermore, the model will

applicable to cracks which are oriented and of heterogeneous

J irregular size and shape. The effect of the cracks will be

reflected through locally averaged quantities describing the
kinematics of the cracks. The output of the model will be a set

of constitutive equations which apply on a scale that is small
compared to the boundary value problem of interest. Therefore.,

it will be applicable to the analysis of bodies with stress

gradients and heterogeneous damage states.I
CHARACTERIZATION OF DAMAGE AS A
SET OF INTERNAL STATE VARIABLFS

Consider an initially unloaded and undamaged composite

structural component, denoted B, as shown in Fig. 2a, where

undamaged in defined here to mean that the body may be

considered to be continuous (without cracks) on a scale several
orders of magnitude smaller than the smallest external dimension
of the component. Although cracks may exist in the initial
state, their total surface area is assumed to be small compared
to the external surface area of the component. Under this
a ssumption the body is assumed to be simply connected and we call
the initial bounding surface the external boundary S. Although
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the component is undamaged, there may exist local heterogeneity
caused by processing and second phase materials including fibers,
matrix tougheners and voids. In addition, the body may be
subjected to some residual stress state due to processing, cool

down, etc.
Now suppose that the component is subjected to some

traction and/or deformation history, as shown In Fig. 2b. The
specimen will undergo a thermodynamic process which will in

general be in some measure irreversible. This irreversibility is
introduced by the occurrence of such phenomena as material
inelasticity (even in the absence of damage), fracture (both
micro- and macroscale), friction (due to rubbing and/or slapping
of fractured surfaces), temperature flux, and chemical change.
While all of these phenomena can and do coL-monly occur in
composites, in the present research it will be assumed that all
irreversible phenomena of significance occur in small zones near
crack surfaces. Outside these zones, the behavior will be
considered to be elastic and therefore reversible under constant

temperature conditions. All fracture events will be termed
damage. Due to these fracture events, the body will necessarily
become multiply connected, and all newly created surfaces not

intersecting the external boundary will be termed internal
boundaries. Because of the above assumptions the model may be
limited to polymeric and ceramic matrix composites at
temperatures well below the glass transition temperature Ta or
melting temperature, where viscoelasticity in matrix materials is
small. Metal matrix composites may have to be excluded due to
complex post-yield behavior of the matrix.

While fracture Involves changes in the boundary conditions
governing a complex field problem, it Is hypothesized that one
may neglect boundary condition changes caused by creation and

alteration of both internal and external surfaces created during
Fracture as long as the resulting damage in the specimen is
iatistically homogeneous on a local scale which is small

compared to the scale of the body of interest. However, the total
newly created surface area (which includes internal surfaces) may
be large compared to the original external surface area. Under
the condition of small scale statistical homogeneity all

continuum based conservation laws are assumed to be valid on a
global scale in the sense that all changes in the continuum
problem resulting from internal damage are reflected only through

alterations in constitutive behavior. Typical microstructural
events which may qualify as damage are matrix cracking in lamina,
fiber/matrix debonding, localized interlaminar delamination and

fiber fracture. Large scale changes in the external surface such
as edge delamination., however, are treated as boundary effects
which must be reflected in conservation laws via changes in the
external boundary conditions rather than in constitutive

equations [36,39).

I THERMODYNAMICS OF MEDIA
WITH DAMAGE

W We now proceed to construct a concise model of the
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composite with damage. To do this, consider once again the
structural component, denoted B in Fig. 2a. The body B is
assumed to be of the scale of some appropriate boundary value

problem of interest. Now consider some local element labelled VLand with external surface faces S, arbitrarily chosen normal to a

set of Cartesian coordinate axes (xl, x 2 , x 3 ), as shown in Fig.
The element V extracted from B and the newly created

surfaces, denoted 2 and with volume Vc, are subjected to
appropriate boundary conditions so that the element response is

identical to that when it is In B. Furthermore, the volume of the

element is defined to be VL, which includes the volume of any
Initial voids. The scale of VL is chosen so that its dimensions

are small compared to the dimensions of B, but at the same time,
the dimensions of VL are large enough to guarantee statistical
homogeneity of the material heterogeneities and defects In VL
even though the total surface area of defects may be of the same

order of magnitude as S1 [40]. Suppose furthermore that in the

absence of defects or at constant damage state the material
behavior is linearly thermoelastic. Now consider the local volume

element VL. For the case where tractions or displacements are

a pplied uniformly to the external boundary of VL, the average
stresses and strains in V L will be determinable from the external

boundary tractions or displacements.
Although the damage process actually involves the conversion

of strain energy to surface energy, the fact that the damage is
reflected in the local constitutive equations rather than
boundary conditions suggests that It be treated as a set of
energy dissipative internal state variables which are not
discernible on the external boundary of the local element.

Review of Thermodynamic Constraints on Linear Thermoelastic Media

The following notation is adopted. Quantities without
capitalized subscripts denote pointwise quantities. Those with

subscripts L denote quantities which are averaged over the local
element V L' Finally, the subscript E denotes linear
thermoelastic properties.

Under the conditions described in the previous section
the pointwise Helmholtz free energy per unit volume h of the
undamaged linear elastic medium may be expressed as a second

order expansion in terms of strain tij and temperature T as
follows [41]:

Ih a u - Ts - h( i j,-T)

I h + Bu- Ts : hCc1 1 lTiCkl + DAT + E 9c1 AT + I FAT 2  , (1)

where u and s are the internal energy and entropy per unit

volume, respectively, and A, 8 .Cijkl D, Lij and F are
material parameters which are lndependent of strain and
temperature and AT z T-TR , where T R is the reference temperature

at which the strains are zero at zero external loads. In

addition, we assume here that all motions are associated with
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Ssmall deformations. Furthermore, inertial effects and
electromagnetic coupling are assumed to be negligible.

Pointwise conservation laws appropriate to the body are

3 as follows:
1) conservation of linear momentum

SojI j ; (2)

H where o is the work conjugate stress tensor to the strain

tensor tij and body forces are assumed to be negligible;

I 2) conservation of angular momentum (assuming body moments may
be neglected)I

0 =0Ji (3)

I 3) balance of energy

; - rijiij + qj,j = r ; (4)

where qj are the components of the heat flux vector, and r is the
heat source per unit volume. In addition, dots denote time
differentiation and ia/ax0;

4) the second law of thermodynamics

| i -r + ( qj),j > 0 5

Furthermore,

1(ui'j + ui) (6)

where u, are the components of the displacement vector.
Constraints imposed by the second law of thermodynamics will
result in [41]

a- D - E FAT (7)

and

3iJ EIJ J- J kltkl (8)
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I
the reference temperature at which AT=O, and (41])

qi Z -k i~ ,9 1(9)

* where

N a T (10)

and kij is the thermal conductivity tensor.

Thermodynamic Constraints with Local Damage

It Is our intention to construct locally averaged field

equations which are similar in form to the pointwise field
equations discussed above. In performing this averaging process

the pointwise Helmholtz free energy described in equation (1)
will undergo a natural modification to include the energy
conversion due to crack formation.

Now consider the local element shown in Fig. 2c with

traction boundary conditions on the external surface S1 . In

addition, the interior of VL is assumed to be composed entirely
of linear elastic material and cracks (which may include thin
surface layers of damage). Integrating pointwise equations (1)

through (6) over the local volume will result in

hEL = AL+BLiicLij+ CLi jkA LiCLk1+DLATL+ELijLijATL+2FLATL ,(11)

where AL , 
B Lij , CLijki. DL. ELIJI and FL are locally averaged

material constants. Also,

I 0 Lji, j  = , (12)

CLij = OLJ i  (13)

I
UL - Lij'LIJ + qkJ, ) rL (14)I.

and

I
*I
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5 - + (+ Lj),j ) to , is1)I

L

where r, called the effective local internal energy, is given by

z EL + CL (6

uEL represents the internal energy of the equivalent uncracked

body, given by

I1

1 f dv - 1 f TdSdS (17)

L V VvL

L VL 
S2

where TC are called equivalent tractions, representing tractions

in the uncracked body acting along fictitious crack faces, as

described in detail in the appendix, and uc i the mechanical

power output due to cracking, ven by

IL

,here Ti are fictitious tractions applied to the crack faces

II

w hich represent Ethe difference between the actual crack face
tractions and T .  Furthermore, the locally averaged stress is

given by

L ij V f oijdV (19)

i L V

3 and the locally averaged strain is given by

I-Lij I L f 7(uinj + u n1 )dS (20)

I where n i are components of the unit outer normal vector to the

surface S1. Equations (11) through (15) are identical in form to

equations (I) through (5), respectively. Further details on this

similarity are given in the appendix.
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On the basis of this similarity we now define the locally
averaged Helmholtz free energy (19,39J:

h L E ul - TLIL ' UEL - TL + u = h + uc (21)L O L (2L

where it can be seen from definition (17) that hEL is the locally
averaged elastic Helmholtz free energy for which residual damage
is zero.

The similarity between the pointwise and local field
equations leads to the conclusion that

L-hL (22)

IL
Li = & + a (23)

P Lij Lij Lii

I - kLiJtLJ (24)

and

SLJ a TL,j (25)

where

I kLik L k 1 1 9dV (26)

VL

I Note the similarity between equations (7) through (10) and (22)
through (25), respectively.

Equations (23) will serve as the basis for
thermomechanical stress-strain relations in damaged composites.
All damage will be reflected through the local energy due to

I cracking uL This term will be modelled with internal state
variables characterizing the various damage modes.

I .Description of the Internal State

In order to describe the internal state, we firstI consider the kinematics of a typical point 0 with neighboring
points A and B, as shown in Fig. 3. Before deformation lines OA

I8



and OB are orthogonal, as shown in (a). After deformation we
imagine that lines joining O',A', and B' are as shown in (b). and

just at the instant that deformation is completed, a crack forms
normal to the plane of AOB through point 0', as shown in (c).

Furthermore, point 0' becomes two material points 0' and 0" on

opposite crack faces and points A' and B' deform further to
I points A" and B". It is assumed that all displacements,

f including displacement jumps across crack faces, are
Infinitesimal, so that strain gages attached at points 0, A, and

B record only the deformation A"O'B". However, the actual strain

is associated with A"O"B". Therefore, it Is essential to

construct an internal state variable which will relate these two

strain descriptions. We therefore construct the vectors uc

connecting 0' and 0" and Ac describing the normal to the crack

face at 0', as shown in (c). It should be noted that *c can be
used to construct a pseudo-strain representing the difference in
rotation and extension of lines A"O'B" and A"OB".

Now recall that the mechanical power output during
cracking is given by equation (18). We assume that at any point

in time t 1  tractions T i  can be applied along the crack faces

which will result in an energy equivalent to that produced by the
damage process:

I u = - f T udS (27)
L

3 S 2 (t )

The quantities TI do not necessarily coincide with the terms in

the integrand of (18) since the process is in some measure

irreversible. However, we define them such that the total
,ertles In equations (18) and (27) are equivalent. For

convenience we will call them crack closure tractions, although

they do not necessarily result in complete crack closure.

Guided by the fact that uc and nc describe the kinematics
of the cracking process at point 0, we now define the following
second order tensor valued internal state variable:

cc cc cc

u 1 n 1 uln 2 u 1 n 3

a un > =oj ucn Iucj u cnc] (28)|c c cn n

I The above description has been previously proposed by M.

Kachanov[42]. Substituting the above into (27) and utilizing

Cauchy's formula gives

uL = -a aidS (29)

!2
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I where it should be pointed out that Integration is performed with

respect to undeformed coordinates.
Note that the components of tc can be recovered from (28)

by using simple row multiplication on aij:

I 2(=uu .ucncucnc (no sum on i) (30)

Similarly, ic can be recovered by using column multiplication on

I
n2 ucn uinc/( 2 (no sum on J (31)

Therefore, although it wou..ld not be necessary to actually perform
the operations described in equations (30) and (31), the normal

and shear modes of crack displacement can be recovered from CUj.
Note furthermore that a is generally an asymmetric tensor,

and that a symmetric alternalyive to equations (28) could not be

utilized to recover normal and shear modes as described in (30)

and (31). As an example, consider the following decomposition of

(28) into symmetric and anti-symmetric components

Sij =61i j  + W21j , (32)

where

j i
wi (ucn C + u CnC) (33)

and

W(ucnc - ucnc) (34)

In order for the anti-symmetric tensor 62ij to be zero, uc and ;c

must be parallel vectors, implying pure mode I fracture. In this
case wlij could be decomposed into a vector (in local

coordinates), thus resulting in vector-valued internal state
variables. For the case where the cracks in the local volume VL

are randomly oriented and of statistically homogeneous shape and

size, the surface integral in equation (29) may be carried out
over all cracks. However, if various groupe of cracks in the

local volume VL are distinguished by markedly different crack
normals nc or geometries, then it will be necessary to

distinguish between the damage modes in order to retain the
kinematic features of the damage process. Therefore, define the

locally averaged internal state variable for the th damage

mode as follows:

10!



oj f ucncdS f a f 1 d S .35)

L I IIIL I L

L L

* where

s2  I S (36)

and N is the number of damage modes. For a continuous fiber
laminated composIte, the modes might be represented by matrix
cracks, interply delamination, fiber fracture, and fiber-matrix
debond (N=4). For a quasi-isotropic chopped-fiber metal matrix
composite, a single isotropic damage tensor might suffice for
randomly oriented matrix cracking (N=I).

Therefore, if we define ojcn to be the average crack closure
stress for the nth damage mode such thatI
3l o~j cc dS , (37)

S2

Iit follows from equations (29), (35), (36), and (37) that

uc Ocn0 n , (38)
L - Lii Lij

where we have assumed that repeated indeces n imply summation
over the range N. It is clear from the above discussion that the
value of N must be sufficiently large to recover the essential
physics of the damage process. In a mathematical sense, this
implies that, whereas the mapping from oij to an is unique,
the inverse should also be true in an approximate .sense.
However, there is no clearcut definition for the range N which
will lead to an accurate description of the internal damage
state. Note also that both u i  and n in equations (35) will be
affected by crack interaction in the local volume.

As an example, consider the case of mode I opening of an
elliptic crack. For this case, equation (35) will result in
dependence of on on the volume of the inclusion. Although
analytic models for linear elastic bodies with cracks result in
response which is dependent on the surface area of cracks only
(15-171, it should be pointed out that they also require the
average crack diameter. This quantity is replaced herein by the
crack opening displacement, which is proportional to the crack

* 11



I.
diameter in a linear elastic body. Therefore, specifying the
crack opening displacement is equivalent to specifying the crack

diameter.
Now consider equation (38) in further detail. The

kinetic quantities a may be interpreted as generalized

stresses which are energy conjugates to the kinematic strain-like

internal state variables an . We infer from this that there

exists a constitutive relation between these variables of the

form

m cn = O (c ,TLk akl) (39)
°Lij Li L ul)

which is history dependent via the explicit dependence on the

internal state variables.

Therefore, substituting (39) into (38) will giveI
ti

u(t 1 ) = f u (t)dt = uL( Lkl(tl),TL(tl),o'kl(tl)) •0)

w h it is now proposed that uc be expanded in a Taylor series

which is second order in each of the arguments in equation (40)
m as follows:

uc = G;jn + H~cnA + Inn + JIC n OCAT

L I L J ij TL +ijklCLij*Lkl Ijkl*Li LklTL

+ Lna n +lMn C n
Ijklmn LiJ*LkloLmn 2 Ijklmn LijCLkl*Lmn

+ ni kC ni kATL+ PijanLij'+ lQtlC n cc
S 2 L L ijklmnpq LijcLklaLmn LpqI

+ T nCLkl LATL + SJkln LijaOklA T

+TjklmnCLijCLklO*Lmn L + jl* Lk

+vnc n a~a AT + Tn2

ijklmnopLitLklLmLo L ijkl L i Lkl Lan

+ VnC t n a c AT2  + n C' e n AT 2
ijklmnop LijtLkla~mn Lop L ij klmn Li LkL mn L

+ nC CLn T2 rCJn C

ijklm npq~i nmn Lpq JC nccT (41)

where all terms are at least linear in an due to the fact

3 12



that uf depends explicitly an damage, and ATLaET -TR Thus,
substituting (11) and (41) into equations (23) and neglecting
higher order terms yields:

AT + Con ~ (42)
Li j = 9 LiJ + ELijATL + CLijklCLkl + IljkiLk.

Restricting the damage to small quantities constitutes a
sufficient but not a necessary condition for dropping the higher
order terms. Equations (42) may be written in the following
alternate form for isothermal conditions

Lii ij + 4C3

Lij L CLijkltLkl *

where

R B ,(44)

Lii BL I

is the residual stress tensor; and

Cijkltkl 1 CLijkl'Lkl + I'LijklaLkl (45)

I defines the effective modulus tensor qijk for any damage state.
Note that although equations (43) are similar to Kachanov's model
[1], the stiffness reduction is a first order effect of damage.

Note also that the inclusion of higher order terms will result in
damage dependent residual and thermal stresses, as well as
nonlinear stiffness loss as a function of damage.

Equations (42) are the completed description of the
stress-strain relationship. Note that these equations reduce to
the standard linear thermoelastic equations in the absence of
damage (oLIJ=O).

Damale Growth Laws

The model is completed with the construction of the
damage growth leas, which may be described in the following
differential equation form:

ij =' i(cLkl' Lkl.TL'O°kl) , (46)

or equivalently, when Oj are single valued functions of time,

I
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ti

ILij(t 1 ) 1 ] n j(cLkl(t),TL(t),O~kl(t))dt (47)I-
Although the above equations are called "growtho laws they

have the more general capability to model such phenomena as
healing.

The precise nature of equations (47) is determinable only
through a concise experimental program coupled with an
understanding of the micromechanics of the medium. Indeed, these

growth laws constitute the single most complex link in the model
development.

In this section an example of a first generation growth
law will be constructed for predicting damage up to the CDS in
continuous fiber composite.. Experimental evidence suggests that
matrix cracks dominate the first phase of damage development in
laminated composites (9-11). Guided by this observation a

single damage tensor is considered in this section: OLij
representing matrix cracking.

In order to completely define equations (47), it is

necessary to construct indicators of both the magnitude and
direction of the damage tensor. In this first generation model
it Is assumed that the direction of the damage tersor is known a

priori and does not vary as the damage state changes.
Specifically, in a typical laminate, it is assumed that, for this
simple example, in accordance with equation (35), the locally
averaged resultants of Gc and 1 c are normL. to the fiber

direction in each ply, as shown in Fig. 4. Thus, for example, in
00 ply 0L 22 *10, and all other components are zero, whereas in
900 ply, aL11 * 0, and all other components are zero (in

global coordinates). In Part II a somewhat more general case of
the damage state for matrix cracking will be considered.

Under the above assumptions, the magnitude of the damage
tensor is the sole repository for history dependence in each ply.
Experimental evidence indicates that for matrix cracking in
randomly oriented particulate composites [43) and matrix cracks
in fibrous composites [21,221 the growth of damage surface area

is related to the energy release rate G by

I 2 - Gn , (48)

where S 2 represents crack area, N represents the number of cycles
In a fatigue test, and n is some material parameter. Guided by
these results, a similar law is constructed here. Equation (48)
may be rewritten in the following form:

2 = KGn.d , (49)

3 14



so that it follows that

1l dOL 2 2.d S2.. d oL 22.KGn.dN (50)0L22waT 2 T TS 23

Assuming that the energy release rate is essentially mode
I and therefore depends on the maximum normal strain, the damage
growth law for matrix cracking Is thus hypothesized to be of thel form

f -r

; = k  n nmn) I . deL22 a-n if Cnmin < n , and
OL22

1L.22 = k 2 n if Cnmin n ' (51)

Iwhere cn is the local normal strain component which is normal to
the fibers. Furthermore, cnmin is the value of cn at which
matrix cracking initiates. k1, k2 , and n are experimentally
determined material parameters which may depend on the initial
damage state or on history dependent damage other than matrix
cracks. The use of en presupposes that the fracture mode is
predominantly mode I in nature, which may not be the case in some
complex layups. In these cases, mode II and mode III terms may
bl required. Note that all components of tLij are zero except

*L22 which is nonzero in the local ply coordinate system
wherein the fibers are aligned parallel to the local x, axis.

Experimental evidence (44] indicates that in croasply
iawinates with multiple adjacent crossplies in sequence, it is
not uncommon to observe matrix cracks which are curved rather
than normal to the plane of the ply. For these cases It is
necessary to carry components of oLij in both the x 2 and x3
coordinate directions. Although it is hypothesized that these
components may perhaps be determinable from the orientation of
the maximum normal strain, e n' this issue is under further
investigation by the authors.

Equations (51) complete the description of the damage
model for the case of matrix cracking. Integration of these
equations in time will lead to current values of the damage
tensor which is input to constitutive equations (42). Fig. 5
shows a typical growth history for a specimen subjected to
monotonically increasing deformation u(L). It should be pointed
out, however, that these equations may be extremely nonlinear and
as such must in some cases be integrated numerically with stiff
integration schemes (45].

I
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CONCLUSION

Stress-strain relations have been developed herein which
account for various forms of damage in continuous fiber
composites. Furthermore, a damage growth law has been proposed
for matrix cracking in fibrous composites. The model developed
herein is thus a complete description necessary to characterize
the thermomechanical constitution of a fibrous composite with
matrix cracks (excluding failure).

The actual use of this model is complicated by the
requirement for numerous experimentally determined quantities, aswell as the necessity to determine locally based observable state
variables by analytic methods. The construction of these

parameters constitutes an entire separate research effort which

is considered in Part II.
Finally, it should be pointed out that although an

internal state variable growth law has been proposed herein only
for matrix cracks, the model is in principle applicable to more
complex damage states in laminated composites, and research is
underway to consider other damage modes [45].
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APPENDIX

Consider a local volume element with some damage state,
where the crack faces are defined as traction free surfaces, as
shown in Fig. Al (al). For convenience we show only one crack,
although in actuality the damage must be statistically
homogeneous in VL. Now replace the actual cracks with fictitious
cracks which are described by the bounding surface between
elastic and inelastic response near cracks, as shown in (a2). We
define this surface to be S2 . In order to insure that the total
mechanical states in the two systems are identical, the
fictitious case must include tractions labelled TF on S2 .

Now suppose that v L is subjected to boundary tractions on
S1 in the undamaged state as shown in (bl). We define an
equivalent elastic problem in which the strface S 2 described in
(a2) is cut from VL and elastic tractions T i are applied on S 2 so
that the total mechanical states of systems (bl) and (b2) are
equivalent.

The actual system of interest is described in (al).

However, for pragmatic reasons we wish to replace the actual
system with a fictitious system with equivalent mechanical state.
To do this, we first replace (al) with (a2), which by definition
has equivalent mechanical state. Next, we define a system
equivalent to (a2), such that

3F TF - T~i TF .,cT (Al)

as shown in (c). Integrating the balance of energy (4) over
the local volume and dividing through by the local volume results
in

U
IU d - 1LfaijijdV + f I vf .Vrd (A2)SL 

V 
VL 

VL

Now consider the second term in equation (A2). Recall

that since Oij is a symmetric tensor

cjIij- - ijui,j (A3)

I Thus, assuming that the stresses are negligible in Vc , the volume
enclosed by S 2 , using the divergence theorem and substituting
Cauchy's formula gives

I
I
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vLfoj iij Lfiji~ i f LiI Lj 1

VL VL-Vc S 1  S2

I = V~LJ dS L 1L ffcad *~~T dS

I S1 S2 S 2

where n are the components of the unit outer normal vector to
the surface S - S 1 + S 2. Now define

ULC - JTi9,dS, (A5)

S 2

I which is the effective specific mechanical power output of the
continuum due to the crack surface tractions. This term contains
both the mechanical power due to crack extension as well as the
mechanical power due to apparent stiffness loss caused by
existing cracks. For the special case of a reversible process
this is the time rate of change of surface energy release per
unit local volume due to cracking in VL. Furthermore, define

I£
CLij (uinj+ujni )dS (A6)

SII
and

U~ ~ 0 Lj~aimnmxjg CjmfmxI)dS vfidV .(A7)

S 1  VL

Therefore, for the case of either spacially uniform surface

tractions or displacements which are linear in coordinates on S'1one readily obtains

I S1 SI

Although it will be assumed in the remainder of this paper that
the above conditions are satisfied, they need only be
approximately true If VL is statistically homogeneous. Thus,

I
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Uequation (A4) becomes

V -j Cja .~jLi (A9)

VL S2

Define also

I LI~j - IJq injdS WO
I SLf

l L S1

l and

i- fdV. (All)
r L  - VL.

V L

Now define

a UE LJd - fTE idS .(A12)
GEL= V dV - I

3 VL S2

which can be seen from Fig. Al (b) to be the equivalent internal
"nrgy rate that would beproduced in the body without cracks.
iioLe that u is not path dependent since it represents elastic

response. ubstituting equations (A4), (A5),(A9), (Alb), (All),
and (A12) into equation (A2) yields the following locally
averaged balance of energy:

UEL * uL - GLijCLij , qLJj - rL, (A13)

We now define the effective Internal energy u (which may be path
dependent) such that

m =, _ L + L , (A14)"L EL L

Substitution of (AIM) into (A13) results In

m i - %ijLij qLjjJ M rL (A15)

I



which can be seen to be equivalent in form to energy balance law
(4).

4 . In order to construct a similar statement for entropy

production inequality (5), first multiply through by T and then
integrate over the local volume V L and divide by this quantity to

I obtain

IIf - IJfrdV + 1 fT(qj/T)jdV > 0 (Al 6)
VL 

V L  VL

I Now define

TI fdV (A17)
TL E= i

I VL

and

L S-- J'TdV (A8

* VL

so that substitution of definitions (All), (A17) and (A18) into
(A16) will result in

L LT L - r L + 1 (jT4d 0 (A19)

* VL

Now note that the last term in (A19) may be written as follows
using the product rule:

1 j ,dV- jdV- q~fjgj/T)dV (A20)

VL VL  V L

UDefine now

T n dS (A21)

I Si
I



Thus, for the case when T is a linear function of coordinates in
VL ,  definitions (AlO) and (A21) may be substituted into (A20) and
this result into (A19) to obtain

1 L- T > - c - 0 , CA22,
L L

Iwhere

I c (1/TLVL) f(qjgj/T)dV- (1/TLVL) fidV VL fgJdV .A3
VLLVL VL V L

ic can be shown to be strictly nonnegative with the assumption
that T is everywhere nonnegative, along with equation (9).

We now assume that the local volume is small' enough
compared to B that the standard procedure may be utilized to
obtain the linear conservation of momentum equations [40o

OLji, j  = 0 , (A24)

similar to pointwise equations (2), and the conservation of
*angular momentum may also be obtained

zLij - cLji (A25)

similar to equations (3). Thus, it is assumed that no body
moments are introduced via material inhomogeneity or other
sources. This assumption must be relaxed when the model is
utilized for interply delamination, since in this case the local
volume element goes through the entire laminate thickness.

Equations (A24), (A25), (A15), (A22), (A14), (A18), (A5),
(A7), and (A6) are rewritten as equations (12) through (20),

respectively, in the main text.

I
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A THERMOMECHANICAL CONSTITUTIVE THEORY FOR ELASTIC
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ABSTRACT

IA continuum mechanics approach is utilized herein to
develop a model for predicting the thermomechanical constitution
of initially elastic composites subjected to both monotonic and
cyclic fatigue loading. In this model the damage is
characterized by a set of second order tensor valued internal
state variables representing locally averaged measures of
specific damage states such as matrix cracks, fiber-matrix
debonding, interlaminar cracking, or any other damage state.
.ocally averaged history dependent constitutive equations are
constructed utilizing constraints imposed from thermodynamics

with internal state variables. In Part I the thermodynamics with
internal state variables was constructed and it was shown that
suitable definitions of the locally averaged field variables led
to useful thermodynamic constraints on a local scale containing
statistically homogeneous damage. Based on this result the
Helmholtz free energy was then expanded in a Taylor series in
terms of strain, temperature, and the internal state variables to

obtain the stress-strain relation for composites with damage.
In Part II, the three dimensional tensor equations from Part I
(1] are simplified using symmetry constraints. After introducing
engineering notation and expressing the constitutive equations in
the standard laminate coordinate system, a specialized
constitutive model is developed for the case of matrix cracks
only. The potential of the model to predict degradation of
effective stiffness components is demonstrated by solving the
problem of transverse matrix cracks in the 900 layer of several
crossply laminates.

To solve the example problems, the undamaged moduli are
determined from experimental data. The internal state variable
for matrix cracking is then related to the strain energy release
rate due to cracking by utilizing linear elastic fracture

I
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mechanics. These values are then utilized as input to a modified
laminate analysis scheme to predict effective stiffnesses in a
variety of crosiply laminates. The values of effective (damage
degraded) stiffnesses predicted by the constitutive model are in
agreement with experimental results. The agreement obtained in
these example problems, while limited to transverse matrix cracks
only, demonstrates the potential of the constitutive model to
predict degraded stiffneuses.
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INTRODUCTION

In Part I it was hypothesized that damage can be modeled 1,y
a et of second order tensor valued internal state variables

(ISV's) which represent locally averaged measures of cracking on
a scale assumed to be small compared to the boundary value

problem of interest. Continuum mechanics [1) was then utilized

to construct stress-strain relations in which all components of
the degraded modulus tensor can be determined for a given damage
state. The intent of Part II is to apply this damage model to
the analysis of continuous fiber-reinforced laminated composites.
The current paper seeks only to predict axial stiffness as a
function of a known damage state. It therefore represents an
application only of the stress-strain relations. The all-
important ISV growth laws are the subject of ongoing research.

Furthermore, as a long range research goal, it is hoped that the
characterization of the ISV's for damage will lead to the
development of a model for structural failure in terms of the

internal state within any local volume in a typical structural

component.

Considerable experimental research has been performed in the

last decade detailing the growth of damage in laminated
composites under both monotonic and cyclic loading conditions [2-
81. The significance of this damage lies in the fact that

numerous global material properties such as stiffness, damping
and residual strength may be substantially altered during the

life of the component. It has been found that the first phase of
fatigue is typified by development of a characteristic damage
state (CDS) [9] which is composed primarily of matrix cracking in

off-axis plies. During the second phase of damage development
the CDS contributes to fiber-matrix debonding, delamination, and

fiber microbuckling. These phenomena in turn contribute to a
tertiary damage phase in which edge delamination and fiber
fracture lead to ultimate failure of the specimen [6).

Analytical modeling of stiffness loss in laminated
composites with damage appears to be only recently studied. The
earliest attempts fall under the general heading of ply discount
methods, in which various phenomenological models have been
developed to discount ply properties in the presence of damage

[10-121. Axial stiffness reduction and stress distribution in
the CDS have also been predicted using a one-dimensional shear

lag concept [5]. Kachanov's modulus reduction technique [13] has
also been applied to fibrous composites [14] and although
promising results were obtained, the model was utilized in
uniaxial form only.

Similarly, very little research has been performed to
develop ISV growth laws modelling the evolution of damage in

laminated composites as a function of load history. Although
extended forms of Miner's rule [15) have been proposed for life
prediction [16,17), they are based on simplified microphysical

fmodels at this time.
A complex interactive experiment and analysis model (called

a mechanistic model) has been proposed [18) for prediction of
life of damaged composites. The mechanistic model appears to

require numerous experimental results for each geometric layup in

I
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order to determine which damage mode results in failure.
Perhaps the most significant attempts to model damage in

laminated composites are contained in references 19-23. The

first two of these use analytical methods to model a medium with

oriented cracks and thus fall under the heading of microphysical

techniques. The first of these two uses variational principles

to obtain effective moduli for linear elastic cracked plies (19].
The second uses the self-consistent scheme to predict stiffness
loss in a single ply as a function of surface area of matrix

cracks [20). It has not to these authors knowledge been applied
to general laminate analysis. Furthermore, to our knowledge no
analytic microphysical technique has yet been developed for
predicting stiffness loss in laminated composites when damage

modes other than matrix cracking occur.

As stated in Part I, the current model is phenomenological
in the sense that the local volume element is modelled

experimentally. Another phenomenological model has been proposed

in the literature for laminated composites [21-23), and this
model has significantly influenced the current model development.
Nevertheless, there exist significant differences between these

two phenomenological models. The most significant difference is

that the damage ISV in TalreJa's model is a vector, whereas that

proposed herein is a second order tensor. Support for the second
order tensorial nature of the ISV has been supplied in reference

24. Recently, Talreja has modified his ISV description somewhat

to include second order tensors (251. Furthermore, the vector-
valued model appears at this time to be laminate specific.

Although both models have been applied to the combined modes of
matrix cracking and internal delamination (26,27], these attempts

must be considered embryonic at this time. It is our contention
that both models warrant further study, especially in anisotropic

media.
The literature review cited above and in Part I Indicates

:-,.it although substantial progress has been made in damage

modelling, the principal results to date deal only with isotropic
homogeneous media. It is the contention of these authors that
the material heterogeneity and layered orthotropy encountered in

laminated composites requires that a more advanced model be

developed for these media. The tensorial nature of the damage

ISV's proposed in Part I may provide this capability.

In this paper the general constitutive model developed in
Part I is specialized for the single damage mode of matrix
cracking in the 900 plies of crossply laminates. Properties of a

single lamina with known damage are utilized to specify the value

of the ISV as a function of damage state. This expression for
the matrix crack ISV is then used to predict the damage-degraded

axial stiffness of crossply laminates with a variety of stacking

sequences. The validity of the constitutive model formulation is

verified by comparing the predicted values of stiffness to
experimentally measured values for other stacking sequences, thus

demonstrating that at least for this case the model is

independent of stacking sequence.

* 2
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ISIMPLIFICATION OF THE MODEL

We now consider the stress-strain relation described in
equations (42) through (45) of Part I (see Appendix A). For the
examples to be considered herein, it is assumed that all residual

stress components are zero (oLij=0), and that there are no
temperature changes (ATL=O).

IReduction to Single-Index Notation
By incorporating the symmetry of the stress and strain

tensors, the quadratic dependence of the Helmholtz free energy on
strain, and the Voigt single index notation [28], the
constitutive equations reduce to (see Appendix A)

I ojj iIoi=Cijcj+I~kOk  (1)

IAlthough we have dropped the subscript L, all quantities in
equations (1) represent locally averaged measures. The
subscripts I and j range from I to 6, the subscript k ranges from
I to 9, and the superscript n ranges from 1 to N, the number of
damage modes.

At this point, further reductions can be made to the number

of unknown constants in equations (1) only by specifying the

material symmetry and specific damage modes of interest.

Material Symmetry Constraints

Material symmetries may now be utilized to further simplify

ihe constitutive equations. The material in question is assumed
to be initially transversely isotropic in the undamaged state on
the local scale, where the plane of isotropy is the x 2  - x 3  plane
shown in Fig. 1. In the undamaged state the modulus tensor C.

is given by [293 iJ

SCl1 C 1 2  C1 2  0 0 0

C1 2  C2 2  C2 3  0 0 0

I C12 C2 3 C2 2 0 0 0
[c) = . (2)

0 0 0 C4 4 0 0

0 0 0 0 C5 5 0

3 0 0 0 0 0 C55

where C 4 4 '2(C 2 2 -C 2 3 ).

I3
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I It is assumed that the crack induces orthotropy in three
planes: the plane of the crack, the plane in which the crack
opening displacement Uc and crack normal Rc lie, and a third

plane which is orthogonal to the first two. Therefore, the
damage tensor Iik is an orthotropic tensor containing 15 unknown
constants in the coordinates described by the crack geometry (see
Appendix B), given by

11 12 123 0 0 0 0 0 0

[ Ii) =.111213 0 0 0
0 0 I 5 0 16 0 7 0 0

0 0 0 0 0 0 0 i1 169

Thus, the complete constitutive equations (1) (assuming the
damage growth law is known) require the determination of 5
independent material constants for the undamaged modulus tenIor
C L .I and 15 independent constants for. the damage tensor, I k.
It should be noted, however, that the planes of these symmetries
will not coincide unless the crack displacement Uc is oriented
parallel to the x l ,  x 2 , or x 3  axis in ply coordinates.

Applicatlon to Matrix Cracking in Continuous Fiber Laminates

3 As discussed in the introduction, the capability of the
constitutive model will be demonstrated by considering the case
of matrix cracking in continuous fiber laminated composites. An
example of this damage state is shown schematically In Fig. 2.
In order to apply the proposed constitutive model to this system
we first examine the response of a single ply subjected to

transverse matrix cracking, as previously shown in Fig. 1.

Assuming that the crack geometry is symmetric about normals to
each of the ply coordinates, the internal state variable

associated with matrix cracking is represented in ply coordinates

by

C al = c 0 1 0 0 a o0 0 l 0 (4)

where the single subscripted notation is defined by equations

(7a). This implies that the crack normal 5c in a single ply is

parallel to the local x 2  coordinate. Furthermore, the crack-

I4
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opening displacement, uc, may contain three components.
N Note that a second order tensor representation of the

internal state variable may be insufficient if the crack
displacement V or normal 4c rotates during the load history. In
this case a higher order tensor may be required (30]. However,
since the crack is matrix dominated and constrained by fibers,
time dependent rotation is assumed to be negligible and the
second order tensorial representation is considered adequate in
the current model. Recent experimental evidence [31] indicates
that cracks do indeed change planes sometimes in multi-ply
laminates with several adjacent croesplies at the same

orientation. However, the crack plane is essentially straight in
each ply, the level at which the local volume is constructed for
matrix cracks.

For the single damage mode of matrix cracking described in
Fit. 2, equations (1) reduce to

a =C 1  1~ 10+11 505+11808 (5)
1 j'J 1* 1 5 1 1

I For relatively thin laminates it is useful to apply the
conditions of generalized plane stress where the out-of-plane
c shear stresses 04 and 05 are neglected. Applying these
conditions to equations (5), imposing the symmetry constraints
described in equations (2) and (3), and using matrix notation
results in

(01 C 1  C1 2  C1 2  0 el

02 C1 2  C2 2  C2 3  0 £2 [ 1 )(C' (

o 3  C12 C2 3  C3 3  0 e3

06 0 0 0 C6 6 " £6

where

I02. 0 0 0 0 0 0 0

11 0 20 0 0 0 0 0 0()

0 I32 0 0 0 0 0 0 0

L 68 _

I Note that the fifth column of the coefficient matrix in equations
(5) is zero due to the fact that does not contribute to the
in-plane stresses in the generalized plane stress reduction.
Furthermore,note that I1 2 ,I 2 and I 2 are the coefficients of

I 5
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the effect of loss of stiffness on the normal stresses a1, 02 and
03. respectively. Finally, note that I68 is the coefficient

determining the influence of stiffness loss on the in-plane shear

stress 06. It is apparent from the above equations that for
generalized plane stress conditions there are ten unknown

material constants to be determined for the case of matrix

cracking.

Determination of the I Matrix

Theoretically it is possible to determine the I matrix

directly from experimental data. This may be accomplished by

subjecting test coupons to prescribed deformation histories,
removing the deformations, and nondestructively evaluating the
damage state. The residual stresses will determine the I matrix.

However, in graphite/epoxy laminates this procedure breaks down

due to the fact that although the crack surfaces may be

determined nondestructively using x-rays and edge replicas, the

crack opening displacements cannot be accurately determined

experimentally. Therefore, an alternative approach is used

herein to evaluate the I matrix.
As described in Appendix C, for the case considered in this

paper, at least to a first approximation, it can be shown that

1 12 =-c II=- 83 ~ ~ 13 .- 23  168--- 66 .()

Therefore, the number of unknown material constants is

reduced to a total of six for the case considered herein.

3 ,.aminate Eouations

In order to utilize single lamina equations to characterize

the response of multilayered laminates, it is necessary to

globally average the local ply constitutive equations. This is

accomplished herein by imposing the Kirchhoff hypothesis for thin

plates [31). However, higher order plate or shell theories could

be utilized also. Generalized plane strain conditions are

imposed rather than plane strain because this is consistent with

the stress state in equations (6) (A detailed description of the

global averaging is given in Appendix D). The resulting

equations are as follows:

(N)=[A)(c°}+(D) (9)

or

i({)=(A-1 ] N)-(D)) (10)

* 6
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where

n
i (Cij) k  tk * (11)

k= I
,!j

and

(D) I t k  [I k  { ') k  (12)I k=l

I ] k (and )a1 k are in laminate coordinates as defined in

Appendix E, and (co) contains the laminate midplane strains.

Furthermore, k specifies the ply and tk is the ply thickness.

For convenience, we have assumed that no moments are produced by
the damage (in the absence of curvature), which is assumed to

hold for symmetric laminates.
In order to determine the effective stiffness for any damage

state, we evaluate the rate of change of (N) with respect to the

midsurface strains ({o) during unloading, that is,

n 9
Sim= k8N ia = Aij+ I I tk Ik (a /0 (13)

k=l J=1

U where Sim is defined to be the effective stiffness. Experimental
* rk on graphite/epoxy laminates has shown that S' 1 is very
Iad'ly a constant during unloading, implying that, at least as a

first approximation for crossply laminates,

(aol/aci)k z constant k=l .... n (14)

THE INTERNAL STATE VARIABLE FOR MATRIX CRACK DAMAGE

Equation (41) in Part I [1] gave the second order Tayloreries expansion of the local energy per unit volume due to
cracking, u , in terms of strain, eLi , temperature, AT, and theI~~~ crcigdL,' l emonerate pupoesinternal state variable (ISV), aLij demonstration purposes,
the predictions of this paper are being confined to symmetric
cross-ply laminates loaded in uniaxial tension with matrix cricks
extending straight through the 900 plies. For this case, 02 is
the only component of the ISV of interest and is defined (in the3 ply coordinate system) as

7
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1 fd ,215

VL S 2

U where u2 is the crack-opening displacement, VL is the local
element volume and S 2  is the surface area of matrix cracks.
Furthermore, we will consider only the case of load-up in the
fixed grip mode where matrix crack extension occurs at constant
strain. Therefore, if the higher order terms in the Taylor
series expansion are neglected, the local energy due to cracking
reduces toI

uc=(A+l1 1 (16)

where A is a constant. jince equation (16) applies to load-up in
the fixed grip mode, 02 can be related to the strain energy
release rate, G m I for matrix cracking by noting that u I is
related to Gm as follows:

u (t)= -I G dS , (17)
L LO

where it is assumed that the initial matrix crack surface area is
zero and S 2 (t) is the surface area at time t. If we make the
assumption that the energy stored due to residual damage is
negligible, then the constant A in equation (16) is zero, and
equating (16) and (17) yields

12c202o =-1 oGmdS (18)
VL 0o

for stable crack growth. In order to properly account for crack
interaction an expression for G m will be determined
experimentally.

The strain energy release rate due to matrix cracking may be
* defined as

Gm 2 U (19)I as

where S denotes matrix crack surface area and U is the strain
energy of the laminate.

As a first approximation we will assume that all the strain
energy released during matrix crack formation occurs in the 900
layer containing the cracks. The strain energy in a 900 layer is

I8
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defined by

U = 2 E 2 2  ' , (20)

for a uniform applied strain, 2 in an elastic material.
Assuming the applied strain to be constant for the fixed grip
condition, substituting (20) into (19) results In

Gm = -VLC2 aE22 (21)

a s

This implies that the effective modulus of the 900 layer changes

due to matrix crack formation. It is noted that Equation (21) is
similar to the expression for strain energy release rate written
in terms of test specimen compliance.

The rule of mixtures yields the following expression for the
loading direction modulus of a cross-ply laminate:

Ex = PE 1 1  + qE 2 2  (22)

p+q

U where p is the number of 00 plies and q is the number of 900
plies. Assuming that matrix cracks are confined to the 9003plies.

22 (23)

as p+q aS

Substituting (23) into (21) gives

Gm = - 1VLC-2 p+q -aE X (24)

q q s
If the rIght hand side of equation (24) is determined

experimentally from a laminate that has a 900 layer that is one
ply thick, the resulting strain energy release rate can be*utilized for other layups by observing that the strain energy
release rate for a ply in a layer that is n plies thick is given
by (See Appendix F.)

U(G )~ I -n VLC 2~ (pq) [aE xJ ,25)

31 ply layer

9f /
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I

where V L Is the volume of a single ply. Equation (25) can now be
substituted into equation (18) to obtain the expression for the
ISV of a single 900 ply for matrix crack extension during load-
up. The resulting equation is

1' = 1C2 n(p+q) £~ dS (6
2 7 2 2 q J s

0

The integral term in equation (26) can be evaluated as follows:

8E dS d = E (27)
Sas

0 £xo

U where Exo is the undamaged elastic modulus and EL is the
degraded modulus corresponding to damage state S 2 (t 1 ).
Substituting (27) into (26) and rearranging, the ISV for load-up
is expressed as

al = 2  n(p+q) E f (ExL,- (28)

load-up 2 S2 (t1 )
at S2 (t1 )

Although it is possible for matrix crack surface area to increase
during unloading, in the current development this Iffect is
assumed to be negligible. Therefore, on unloading 02 depends
only on the crack-closure displacement, u2 in equation (15), and
would go to zero on complete crack closure. Assuming that the
crack-closure displacement is linear with strain and the matrix
crack surface area is constant, equation (15) can be rewritten as

mIunloading (29)

where c is a constant of proportionality.
* The constants in equations (28) and (29) must be determined

from experimental data. Considering a tensile test with a load
and unloading cycle, at the instant of load reversal the

expressions for the ISV for load-up and unloading must be equal.
Therefore, setting equation (28) equal to (29) and rearranging,
gives the following relationship

I 10
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It should be noted that all matrix cracking information is

contained in the term Exl/Exo. Since equation (30) applies only
to a single 900 ply, Exl was determined from the experimental
results of the [0/90/0]9 laminate. The following expression was

obtained from a least squares curve fit to the experimental
values of E x /E xo versus 2:

ExllExo = 0.9969-O.061607"S 2 (tl)+O.046230"S2 (t I) . (31)

Recalling equation (13), it is seen that the effictive
stiffness of a laminate can be obtained by specifying ao 2 /aC 2 .
On unloading this is given by equation (29) to be

aa 2 /ae 2  =c . (32)

Therefore, equations (30) and (31) are used with laminate3 equations (13) to predict the effective stiffness of any laminate.

MODEL COMPARISON TO EXPERIMENTAL RESULTS

The model has been utilized to predict the damage dependent
o d stiffness of several crossply laminates. This has been

.:..plished by utilizing the laminate stiffness equations (13),

in conjunction with the damage evaluation procedure described in
the previous section. The reduced stiffnesses predicted by the

model have been compared to experimental results obtained from

graphite/epoxy coupons composed of Hercules AS4/3502.
The coupons were obtained from laminates fabricated from

prepreg tape using a hot press technique in the Mechanics and
Materials Center at Texas A&M University. The laminates were

cured according to the procedure recommended by the prepreg tape
vendor. Quasi-static tensile tests were conducted on an Instron

1128 screw driven uniaxial testing machine. Matrix crack damage

states were evaluated by x-ray radiography and edge replication.
Further details of these procedures are contained in reference
( 311. Initial undamaged lamina properties are given in Table 1.

These properties were obtained experimentally from [ 0 ] 8 , (90]8
and ±14532s laminates and are typical for this material system.

As discussed in the previous section, the strain energy release

rate as a function of surface area was obtained from [0,9OO
control coupons.

The experimental values of normalized axial stiffness versus
matrix crack surface area per 900 ply are shown in Fig. 3. For

each laminate, test coupons were quasi-statically loaded in an

|,1
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incremental fashion to the matrix crack saturation damage state.
At each load step, the matrix crack damage state was documented
and the axial modulus was measured by unloading and reloading the
coupon. As would be suggested by ply disount theory, the axial
stiffness loss increases with increasing number of 900 plies.
Also, as would be predicted by shear lag analysis, the number of

cracks per inch at the saturation damage state decreases with
increasing 900 layer thickness.

Values of effective stiffness for each cross-ply laminate

were predicted by the constitutive model using equations

(30), (31), and (13) and the experimentally determined values of
matrix crack surface area. Figure 4 presents a comparison of the
model predictions to the experimental results for the [0,90,0] s

laminate. The excellent agreement between theory and experiment

for this laminate was used to characterize the strain energy
release rate as a function of matrix crack surface area. Figures
5, 6, and 7 present the comparison between the model predictions
and the experimental results for the [0,901. ,  [0,902) s , and
[0,903)a laminates, respectively. As can be seen, the model
predictions are in close agreement with the experimental results.

The results are quite encouraging given the relatively small

stiffness losses of the (0,90,0)8 and [0,90] laminates relative

to the larger losses experienced by the [0,90 2 s and (0,903] s
* laminates.

SUMMARY AND CONCLUSIONS

A model for predicting the stiffness loss in laminated
composites as a function of microstructural damage has been
proposed in this two part paper. In part I the general

theoretical framework was constructed for elastic composites with
.ge. In part II the model has been specialized for the case
Imatrix cracks in crossply laminates. In this process the

following key developments have been reported:
1) material symmetry constraints have been imposed on the

* damage constant tensor Iijkl
1j 2) the damage tensor oij has been reduced for the case of

plane stress;

3) an approximate procedure has been proposed for obtaining
the damage constant tensor;

4) damage dependent laminate equations have been
constructed; and

5) the internal state for any crossply layup has been found
to be derivable from energy release rates experimentally obtained
from a single layup.

The model has been demonstrated to be accurate in predicting
the damage dependent reduced stiffness of several graphite/epoxy

crossply laminates with matrix cracks. While a number of
simplifying assumptions were necessary for this model

demonstration, most of these assumptions are the same as are
typically made by classical lamination theory and do not
represent a restriction or limitation to the general

applicability of the model. However, the development herein is

* 12
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currently limited to cross-ply laminates with symmetric damage

states. The authors are addressing this limitation by developing
damage dependent laminate equations which account for the
curvature produced by nonsymmetric damage and the resulting
coupling between extension and bending [27]. Finally, the
approach described herein depends on the damage state being

determined experimentally. This restriction is being addressed
by developing damage growth laws which would allow the ISV, and
hence the damage state, to be predicted as a function of the
loading history of the coupon or structural component.

U Current and future development of the model will deal with

the following issues:
1) application of the model to laminates with matrix cracks

that are angled or curved rather than extending straight through
the 900 layer in the xl-x 3 plane [24];

2) application of the model to laminates with both matrix
cracks and interply delaminations (27];

3) application of the model to layups more complex than
croseply laminates; and

4) development of internal state variable growth laws for

matrix cracking and interply delamination.
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I Table 1. Material Properties for Hercules AS4/3502

I Lamina Properties

3 Longitudinal Modulus Ell 21.0 x 106 * 2.0% psi

Transverse Modulus E2 2  1.39 x 106 ± 2.1% psi

I Shear Modulus G1 2  0.694 x 106 psi

Poisson's Ratio Vi2 0.310 ± 3.7%

Longitudinal Strength Ftul 326,000 ± 3.5% psi

Transverse Strength Ftu 2  1,085 ± 9.8% psi

Long. Failure Strain Etul 0.0144 ± 4.6% In/In

Tran. Failure Strain Ctu2 0.00773 ± 6.7% In/In
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3APPENDIX A: APPLICATION OF SYMMETRY CONSTRAINTS

The damage-dependent constitutive model (equations (42)
through (45) of Part I (1]) Is defined as follows:

1 _CT J )+In (]a
ij i iJkl(cklkl ijklokl (Ia)

where aij As the local stress tensor, Ckl is the local strain
tensor, a is the residual stress in the absence of strain and
temperature change, Cijkl 1s the undamaged modulus tensor, ek1 is
the thermal strain tensor, an is the Internal state variable
tensor, and InJkl is the damage modulus tensor. Furthermore, we
have dropped the subscript L (denoting locally averaged
quantities) for convenience.

For demonstration purposes, the residual stress tensor and3the temperature change are assumed to be negligible, resulting in

3 Oij=CijklCkl+I~jklal (2a)

Note that Injkl is a fourth order tensor with 81 coefficients .or
each value of n. It is assumed here that the constitutive
equations given by (2a) are statistically homogeneous.
Therefore, the conditions of stress and strain symmetry as well
as the existence of an elastic potential can be applied to
equations (2a) to obtain

3 Cijkl=Cjikl Cijkl=Cijlk ,  Cijkl=Cklij , (3a)

*and

Ijkl jikl (4a)

It is most convenient at this point to reindex the constitutive
tensors using the Voigt notation (28] where

I01211 04=023=o32

021'22 05" 13 31, (5a)

3 3033 o63012=o21

Iand

I
I
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C ! 4 2c 2

3 =2r 3 2

C21C22 c 5 2 1 3 =2c3 1  . (6a)

m€3_f33 c6 -2c 1 2 -2c2 1

Furthermore, for all values of n

m011 04023 075031

02=022 051032 08 -*12 , (7a)

0361033 0630 13 59=021

Using the contracted notation, equations (2a) can be written as

mi=C.lr-J+1 n (8a)

where i and j range from I to 6, k ranges from I to 9, and n
I ranges from J to N, where N is the number of damage modes.

I
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APPENDIX B: SYMMETRY CONSTRAINTS ON THE DAMAGE MODULUS TENSOR

Consider the following component of Internal energy due to
cracking:I

Since the strain tensor is symmetric

ijkl='jikl (2b)

I Therefore, there are 54 independent constants in the damage

modulus tensor lJk1. Expanding out equation (lb) thus gives

uc 1 032+11 1 +1 1 1 l 12
+1 1 1 1 +111

112r *3C 113F-11*13+113 f10 1 1 1" 1

+11 1  1C 11 +121 1 +11 1+11
+I1]21f1102+I2211-22a*1+1 2 2 2 2 2 2 2 +12 2 3 3c 2 2o 3 3
122 2 3 t2 2 *2 3+1 2 2 3 2 2 2 * 3 2 + 2 2 1 3C 2 2o 1 3+ 2 2 3 1C 2 2 *3 1

+ 11+ 11+ 1 1 + 11
+2 2 1 2 t2 2012 +i 2 2 1 22 * 1 +i 3 1 1 C3 3 ,+1 3 3 2 2 C3 3 2 2

+11 +1 1 4-1 1 +11
+1 3 3 3 3 c 3 3 0 3 3 '3 3 2 3c 3 3 a 2 3 j 3 3 3 2 c 3 3 0 3 2 +I 3 3 1 3 3 3 013

+12 1 3 c 3 1 +11 1 ~o~+113 ~c 3 1 2+1 2 31  0 1

+111 + 11 1 1 1 1
+1 j33 1332+1 33 1331 3 321c 331+1 2~ 3 12

2'322'-23* 2 !2333f23a33 '2323f-23c23 2332C23032

* ~+1132102+1121 101+11222 1+11233 13

+11223 10+11232 10+1l1 013 +11 13

I+1j1 2c 1  +i 1  j a 1 +(11b+1)

IWe now wish to impose orthotropic symmetry. In order to do

this, first rotate 1800 about the x3 axis [28]. The direction
*cosines for this transformation are

I
U

13 2l•3 13 3- 3 l 131I3 3 I If13'1



talk'] = -i 1 . (4b)
l I )-

Therefore, since tij is a second order tensor,

ek" I €'=C tjak'l J , ", (5b)

m it follows that

I-1 f12 --3
ftk~Il e, £-22 -r-23 1.(6b)

L-r3 -r-23 £33_

l Furthermore.

1l a 1 2 -a13

ak,' 1 =22 -23 . (7b)

k 2 23 2 -*2
/ 1 . 1

L-a3, --32 ° 33

I Since uc must be independent of coordinate system

uc=Ip,q r s, (8b)

l Substituting (6b) and (7b) into (8b) and comparing this result to
(3b) will result in

I113 l 13211 1 1 221 2

I123 11132=1 3 1 2223 12232 = 0

II I I =0

12213212231=13323
=13332=133131I3331=011311 11 =,1 oil1 31 =

12311 2322 2333 1231212321011311=0
1 1 ==231

132 33 11312=11321 11223211232z0

I12130112310 . (9b)

Rotating 1800 about the x2 axis gives

1



I.

[aik'] = ] 0 (lOb)
I 0 -1-

Therefore,

SL-12 C22 J
C13 -C2 3 t33

Furthermore,

al °1-012 *13

I 1 = 021 22 3 (12b)
I 1 l0

L 31 -32 e33

Substituting (1ib) and (12b) into (8b) and comparing to (3b)
results in

1112 1121 221212221=1 3312=13321= 0

I2313= 2331 11323I 332=I1211= 1222 1233

Rotating 1800 about the x, axis yields no additional constraints.
Therefore, imposition of orthotropic symmetry on 1 ijkl reduces
the number of constants to 15. These are

111111 12- 1122 2 - 2211

I =11 I =11 1 l

133- 3333 123- 2233 132- 3322(lb

1 -=] 1I8 11 1 91 a ll
44 2323 45- 2332 '56 1313

157=11331 68 1212 69- 2121

I
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Therefore, the orthotroplc damage modulus matrix Is given by

ifI f If 3 0 0 0 0 0 0I 11 12 13

11) 122 12 0 0 0 0 0 0

I I 1331 0 0 0 0 0 0
El i] . (15b)

0 0 0 114 50 0 0 0

0 0 0 0 0 1561570 0

0 0o 0 0 0 0 0 1618

I For the case whereI .

[all = [o O2 0 o 0 0 o8 0J (16b)

I
equation (15b) reduces toI

0 1 120 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 1 130 0 0 0 0 0 0
0 23 0 (17b)

0 0 0 0 15 0 0 0 0

0 0 0 0 0 0 0 0 0

IL 00 000 680

I
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APPENDIX C: DETERMINATION OF THE I MATRIX

At a material point in VL the stress-strain relation in the

absence of temperature change is

i= CijklCkl (Ic)

Integrating over the local volume (excluding cracks) gives

__W Id -__d (2c)

Lij VLJ fo i u.&.Lfc ijklCkid

VLVC VL-VC

where o if fs the average stress outside the damage zones. In
this section this value of the stress tensor is assumed to be

identical to the average stress aLij' which includes the average
of the stress in the damage zones. Assuming that Cijkl is
spatially homogeneous in VL, the above may be written

I, fe ij = ij fklu ) dV (3c)

ij = kl kldV = C f-klvUk'Ul'k

VLVC VL-VC

Using the divergence theorem on the last term gives

bLj = Cijkl JL(ukIunk)S J (uknl+ulnk)dS] (Ac)

I Sl 2

Or. equivalently,

°Lij = Cijkl(CLkl-R kl-lk) . (5c)

I
However, the Taylor series expansion has already given (for
isothermal conditions)

oij = Cijklekl+iijklOkl . (6c)

Therefore, equating like terms in equations (5c) and (6c) gives

I
mI
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I~jkI~C1Jk1 k-i

I I tjk1~2 (CIjk1+CIj1k) k*1 . (7c)
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APPENDIX D: LAMINATE EQUATIONS

The values of generalized plane strain are given by

( x
Sto CI y y

= +Z , ld)0z e= 0I& It
Cxy xy Cxy

where the superscript o denotes the midsurface strains and the
1 matrix denotes the midsurface curvatures. Under the condition
of generalized plane strain there is no warping allowed out-of-
plane, which Implies that Kz-0.

It is now assumed that no moments or curvatures are imposed
and that all laminates studied are symmetric through the
thickness (including damage). Therefore, in order to determine
the resultant forces, it is necessary only to integrate the given
stress state over the laminate thickness to obtain

I t/2
Nx a x

* Ny 0y

y dz , (2d)
INz 

z

Nxy xy
iy -t/2

where t is the total thickness of the laminate.

Substituting equations (8a) and (Id) into (2d) for the case
where there are no rotations results in

(N) = /2 ([C3[t°) [Tl](;dz , (3d)
I -t/2

where (N) denotes the force resultants, overbars denote that
I these Quantities are transformed to global coordinates, and (c0)

represents the mid-surface strains. Note that since transverse
cracks are assumed to go completely through the thickness of the

cracked plies the stiffness and damage are assumed to be
spacially constant through the thickness of a single ply.
Therefore, equation (3d) can be written as

I
I
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(N)- ([Elk (Zk-Zk-l)(EO)+(iflk(Zk-Zk-l)({ k) , (Ad)

k= I

where k specifies the ply and Zk-Zk_ I Is the thickness of each

ply. One can define

I n
A IJ I (Cij)k (zk-Zk_1) , (5d)

Sk=J

and

O k=1
D

Uwhere Arepresents the laminate averaged stiffness matrix and

(D) I t~le laminate averaged damage term. Thus, the laminate

3 averaged constitutive equations become

{N1=A](c°}+(D) . (6d)

Experimental testing Is often conducted on unlaxial testing

~machines In which the applied force resultants are input and the

strains are experimentally determined output. Therefore, at
times. It is more convenient to express the strains in terms of
the applied force resultants as follows:

I °)=[A( {N(D) . (8d)

Note also that moments wll fbe produced even in the absence of

strain if the damage state Is not symmetric through the

thickness. However, for the case considered herein, it will be

assumed that all damage states are symmetric, and moments are
I therefore not considered.

I
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APPENDIX E: TRANSFORMATION EQUATIONS FOR THE DAMAGE
TENSOR AND THE DAMAGE MODULUS TENSOR

I Consider a coordinate rotation 0 in the laminate plane (x l-
xe plane) measured clockwise from the ply coordinate system to
t e laminate coordinate system. For this case the direction
cosines are

[Coss -sine 01

alk'] = sine cose 0 (le)SLO 0 1 _
Recall that since a) is a second order tensor

k 'I" = aijaikoajl, (2e)

Substituting (le) into (2e) for ac given by equation (16b) gives

01 2 coses in0+a 2 s in 2 0

-a 2 slnecose+c 2cose

I 0

0
(at1 ) = 2 cos0 . (3e)

0

a3 2 sfnG

I zcsn2  z ncs
12 e+os 2 sinecose

Furthermore, Tp'q'ros' is given by
1 TT 0,a0r s ,  = 11klt 0j~ a ralso, (4e)

U ~ ~ ~ q r s' Iiiklaip'aiq'akrlas

USubstituting the nonzero components from equation (17b) into (4e)

gives

I
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APPENDIX F: DIMENSIONAL ANALYSIS OF STRAIN
ENERGY RELEASE RATES

This appendix develops an approximate dimensional analysis
of the strain energy release rate of a cross-ply laminate
containing matrix cracks in the 90 ° plies. The analysis does not
attempt to fully address the complexity of the cracking process.

I For example, the nonlinear material effects, crack-tip blunting
at the 0/90 interfaces, and the relative thickness of the 00
constraint layers are not included in the simplified analysis.
In spite of these limitations, the analysis does adequately
account for the influence on the strain energy release rate due
to the spacing of pre-existing matrix cracks in the 900 layers
and the thickness of the 900 layers. The experimental results
displayed in nondimensional form in Fig. F2 suggest that these
are the two important dimensional parameters for cross-ply
laminates and all other effects are secondary.

Consider the cracked 900 layer shown in Fig. Fl. The total
strain energy in the region surrounding the crack that includes
the strain energy available to be released during crack extension

I Is given by

U = UA + UB (if)

where UA Is the strain energy ahead of the advancing crack, and
UB is the strain energy behind the advancing crack.

In terms of strain energy density, U0 , equation (If) becomes

I U = (Up)A [t(w-a)LE) + (Uo)B~taLEJ , (2f)

where LE is the effective length of the material from which
strain energy will be released by the advancing crack. It should
be noted that we are not suggesting that strain energy is only
released from a volume of material that is a rectangular
parallelepiped. This concept of an effective length is used only
as a convenience , as will become evident in the following
development. The effective length Is a function of both thecrack spacing, S. and the thickness of the 900 layer. Therefore,
LE can be expressed as

LE = ct , (3f)

I where c is a nondimensional function of the crack spacing and the
900 layer thickness. In addition, the strain energy density
ahead of the crack and behind the crack can be expressed as
functions of the strain energy density in the 900 layer In the
absence of cracks multiplied by some dimensionless constant that

depends on the existing matrix crack spacing and the thickness of
the 900 layer. Written symbolically, thenI
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I
(Uo)A = Uo fA (4f)

and

(Uo)B = Uo f B (5f

I where U. Is the strain energy density in the 900 layer in the
absence of cracks, and fA and fB are functions of the crack
spacing, S, and thickness, t. Substituting (3f), (4f) and (5f)

I into (2f) yields

U = UofA(ct 2(w-a)]+UofBct2a]

= Uoct 2 (fAW + a(fB-fA)J . (6f)

Strain energy release rate at each crack tip is defined as
follows

G _ au (7f)

l Substituting (6f) Into (7f) thus gives

G = LUoct(fA-f (8f)

Notice that c, fA and fB are all functions of the layer thickness
and existing matrix crack spacing. Therefore, define a new
function f such that

f(S.t) = C(fA-fB) (9f)

Since the function f(S.t) Is a dimensionless function, it must be
a function of S/t. Therefore.

I C(fA-fB)=f(S/t) (1Of)

Substituting (10f) into (8f) yields the following expression for
the available strain energy release rate for matrix cracks

I
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G = It(Uof(S/t)) .

Therefore, the available strain energy release rate due to matrix
cracks in a 900 layer is linearly proportional to the thickness
of the 900 layer. The quantity in the brackets in equation (hIf)
is related to the properties of the composite material system and
the laminate stacking sequence. This quantity can be determined
from experimental data.

If it Is assumed that cracking occurs when the available
strain energy release rate is equal to the critical strain energy
release rate which is constant for all matrix cracking, then

G = GcR . (12f)

Furthermore, for a linear elastic material with rigid fibers, the
strain energy density is given by

Uo = - 22 t22 (13f)

Substituting (IIf) and (13f) into (12f) and solving for strain
results In the following expression for the strain In the 9005 layer at which matrix crack extension occurs:

1/2
- GcR 1 (14f)

I£22 L[tE 2 2 f(S/tg

IRearranging gives

4GcR (15f)

2 = f(S/t)
tE 2 2 "22

Finally. the thickness of the 900 layer is given by

t = nt1  , (16f)

where ti is the thickness of one ply and n is the number of
consecutive 900 plies. Substituting equation (16f) into (15f)
results In

I
I



4Gm I f(S/t) . (17f)

tIE 22 Ln 2

i If the influence function, f(S/t), is constant for all laminate
stacking sequences, then the left hand side of equation (15f)
will be a function of matrix crack surface area only.

The terms In parentheses on the left and right hand sides of
equation (17f) are laminate specific while all other terms are
constants. T?) function f(S/t) Is constant for all laminates then
a plot of nc 2 2 versus t/S should be the same for al I laminates.
The experimental data is plotted In Fig. F2 and as can be seen
the data for all laminates follow the same trend curve.
Therefore, It can be seen that the available strain energy
release rate Is a function of the 900 layer thickness and the

matrix crack surface area. All other laminate parameters such as
the number of consecutive 00 plies results In second order
effects on the energy release rate.
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I ABSTRACT

I
Experimental evidence has shown that significant stiffness loss occurs in

graphite/epoxy laminates when matrix cracking and interply delaminations

exist. Therefore, a cumulative damage model for predicting stiffness loss in

Igraphite/epoxy laminates is proposed herein by applying a thermomechanical

1constitutive theory for elastic composites with distributed damage. The model

proceeds from a continuum mechanics and thermodynamics approach wherein the

*distributed damage is characterized by a set of second order tensor valued

internal state variables. The internal state variables represent locally

averaged measures of matrix cracking and interply delaminations. The model

formulation provides a set of damage dependent laminated plate equations.

These are developed by modifying the classical Kirchhoff plate theory. The

I effect of the matrix cracking enters the formulation through alteration In the

individual lamina constitution. The effect of interply delamination enters

the formulation through modifications of the Kirchhoff displacements. The

corresponding internal state variables are defined utilizing the kinematics of

I the interply delaminated region and the divergence theorem. These internal

state variables depend on the components of the displacements created by the

delamination.

I

l KEY WORDS

I laminated composites, damage, graphite/epoxy, continuum mechanics, plate

theory, internal state variables, matrix cracking, delamination
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I I NTRODUCT IONI
Damage accumulation in composite laminates has become an extremely

important design consideration in modern aerospace structures. Consequently,

the composite designer must be aware of the effect of damage on the structural

Iresponse. Previous research in damage mechanics has experimentally identified
the various types of damage and their initiation mechanisms. This has been

supported by extensive analytical investigations describing the stress and

deformation fields in the damaged region. These methods include finite

element analysis, finite differencing, shear lag, fracture mechanics,

l nonlinear viscoelasticity, and general boundary value problem solutions for

*special crack geometries.

In spite of the considerable research that has occurred, a comprehensive

understanding and formulation of the mechanics of damage in composite

materials is not yet complete. Only recently has significant attention been

given to the development of cumulative damage models capable of predicting the

material response due to damage. These models proceed from three conceptually

different bases: 1) fracture mechanics in conjunction with microcracking [1-

7], 2); empiricism 18-121; and 3) phenomenological internal state variable

theories which are based on thermodynamics 113-20].

As shown in Fig. I., experimental evidence indicates that axial stiffness

of graphite/epoxy crossply laminates is significantly affected by matrix

cracking and interply delamination. The stiffness values are normalized and

compared to the matrix crack density prior to saturation and then to the

observable surface area of delaminations after saturation. The surface area

of cracking for each damage mode was determined from edge replicas and X-ray

radiographs which were obtained periodically throughout the load history. The

21



m

UX-ray radiograph corresponding to matrix crack saturation in the 90° plies of

j a 10 2, 9 02)s laminate is shown in Fig. 2 and the radiograph corresponding to

approximately 35% delamination, as measured by an optical planimeter, at the

0°900 interface is shown in Fig. 3. Further discussion of the experimental

observation of the effect of damage mechanisms such as matrix cracking and

interply delamination on stiffness in crossply laminates is presented in

references 21 through 23.

On the basis of these experimental results, a cumulative damage model for

predicting stiffness loss in composite laminates in the presence of matrix

cracks and interply delaminations is proposed herein . The constitutive model

Irepresents an extension of the internal state variable approach formulated by

Allen, et al. [19,20]. The theoretical development utilizes the concepts of

continuum damage mechanics wherein the effects of the internal microcracking

are reflected through alterations of the local constitutive relations. This

procedure is pragmatic when compared to other alternatives such as treating

each internal crack boundary as a surface in a mulitiply connected domain,

thus producing an analytically untenable boundary value problem. In order for

I the model to be accurate, statistical homogeneity of the damage is required on

a local volume scale which is large compared to the laminate microstructure

but small compared to the boundary value problem of interest. Previous

applications of the model {20,241 have considered matrix cracking only. It is

assumed that this damage is statistically homogeneous in the local volume of

m the cracked plies. Therefore, the effect of matrix cracking is directly

reflected through alterations of the individual lamina constitutive

properties. In the current paper, interply delaminations will be included in

the previously proposed theory. Since interply delaminatlons are not

statistically homogeneous in the out-of-plane coordinate direction, a

3I
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m kinematic constraint equation is utilized to modify the previous theory.

The stiffness of multilayered laminates can be obtained by averaging the

individual lamina constitutive properties. For undamaged laminates this may

be accomplished by imposing the Kirchhoff hypothesis for plates 1251 and

integrating the local ply constitutive equations over the laminate

m thickness. Higher order plate theories such as those developed by Mindlin

[261, Reissner [271, and Reddy [28] which account for transverse shear

deformations could be utilized as well. A modified form of the Kirchhoff

hypothesis is assumed to suffice herein.

m MGDEL DEVELOPMENT

I The Kirchhoff hypothesis must be altered to reflect the kinematic changes

due to damage in the local volume element, VL, as shown in Fig. 4. The effect

of interply delamination is to produce a jump discontinuity in the

displacement field. By contrast, the kinematic effects of matrix cracking

have already been locally averaged into ply constitutive properties [20).

I Thus, the effect of interply delamination enters the laminate formulation

m through alteration in the through-thickness kinematics and the effect of

matrix cracking enters the laminate formulation through alteration in the

individual lamina constitutive properties.

The deformation geometry and through-thickness variation of displacements

for region VL are shown in Fig. 5. Here u 0  is the jump discontinuity due to

interply delamination. Because of the delamination, the normals to the

midplane are no longer constrained to remain normal after deformation. Line

A-A' represents the actual before and after kinematics due to delamination.

On the other hand, line C-C' represents the average effect of the

I
4
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m delaminations in VL. The rotation, 0, in each ply will also be altered by

the delamination as shown in Fig. 5. This implies that o may also be subject

to a jump discontinuity at the damaged ply interface. The x component of the

displacement field shown in Fig. 5 is therefore assumed to be given by

u(x.y,z) = u0(x,y) - z [s0 + H(z-z)i) U (1)

oi Dzis

where u is the midplane displacement, 8 is the undamaged ply rotation, sy is

the ply jump rotation in the x-z plane due to delamination, u is the ply jump

extension, and H(z-zi) is the Heavyside step function. For notational

simplicity the Heavyside step function will be written as H(zi) E H(z-zi).

The subscript i denotes the ith interface location of the interply

Idelamination and the repeated i subscripts imply a summation over the number

of damaged ply interfaces. It is apparent from Fig. 5 that

00 D D
u , , i , and u depend only on the x and y coordinates.

Similarly, the displacement in the y coordinate direction is assumed to

be given byI
v(xy,z) = v°(xy) - z (,o + H(zi ) * ) + H(zi ) v D (2)

0 0

where v is the mldplane displacement, * is the undamaged ply rotation, * D is

the ply jump rotation in the y-z plane due to delamination, and vD is the ply

jump extension in the y coordinate direction.

The through-thickness displacement is assumed to be given byI
w(xyz) = w0(x,y) + H(zi) w (3)

5I
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I

The displacement equations are averaged over the local area, ALI

shown in Fig. 4, in order to produce locally averaged displacements to be

utilized in the laminate formulation. Thus,

u L(Iu-1 [u- H(zl)(so) ) + H(Zi) uD dxdy (4)UL(X'YZ) = -AL AL

if [v - z( Iv + H(z1 )(OD1 )) + H(zl) vDJdxdy (5)L(Xy-z) = !AL AL
m and

WL(X,yz) [w + H(zi) w1 dxdy (6)

By averaging the displacements, the delamination jump discontinuities are also

averaged over AL.

The laminate strains are given by

au L
L (7)

EL - (8)

y TWLY aw L

E (9)

av L awL
Y = + - (10)Lyz az ay

au L awL
YLxz 7 + T(11)z +axI

1x



a L + a_- 
(12)

xyI
Thus, due to the interply delamination all six components of the strain must

be included in the laminate formulation.

The laminate constitution is obtained by integrating the stress in each

m lamina over the laminate thickness. The local lamina constitution is assumed

to be anisotropic since the jump displacements resulting from delamination

produce local anisotropic responses. That is, the out-of-plane shear strains,

and , resulting from delamination will contribute to the force
YLxz YLyz

resultants. The local lamina constitution is given by [201

a I- Q C a

L Q11 QI2 Q13 Q14 15 16 C xx

[ L: = Q12 Q22 Q23 Q24 Q25 Q26 L yy

MGLJ LQ16 Q26  Q36 Q46  Q56 Q66  cLz- azzM
0

yz
YL 0 (13)

m 

YLx ZxyYL - xa

where [Q] is the transformed anisotropic stiffness matrix for the lamina and
I M M and M represent the strain-like internal state variables foraxx, ayy a nd, xy rpeettesri-ieitra tt aibe o

matrix cracking in terms of laminate coordinates, defined in references 19 and

20.

0 The resultant midplane forces and moments per unit width of region VL

in the laminate are given by

7
I



I
t/2

N y f " y dz (14)

m Nxy -t/2 {xy

and

t/2

{ xy} -t/2{ y z dz (15)

I
where t is the laminate thickness.

m In order to obtain the resultant laminate forces, first substitute

equation (13) into (14) to obtain

t/2
{N} = f_2[QI (e L) - faM}} dz (16)

-t /2

The locally averaged strains are substituted into equation (16) to give

au

I _v

t/2 aw dxdy - M} dz
N} f IQ] av aw (17)

-t/2 L A + 2y

au aw
7Z- ax
TU ax

I
where u, v, and w represent the modified Kirchhoff displacements.

The divergence theorem is now utilized in order to simplify the volume

I
m 8



m

m integrals in equation (17). The main objective of applying the divergence

theorem is to obtain an expression for an internal state variable for interply

delamination which is similar in form to the ISV for matrix cracking. The ISV

for interply delamination should reflect the kinematics of the cracking

process shown in Fig. 6. Applying the divergence theorem to the resultant

I forces yields

mu n x

vn
y
nz  n M

{NQ vnIQn dS - zI [QIk(zk- Zk1)
L S z y k=1

u nz+ w nx
u ny+ v nx  (18)

I where nx 9 ny, and nz represent the components of the unit outer normal on

surface S. Note that the integration over S includes both the external

boundary of VLP S1 ,  and the internal crack boundaries, $2, as shown

in Fig. 6. The last term in equation (18) is obtained by noting that [Q]

and (a m are piecewise constant in each ply, denoted by the subscript k, which

m ranges from one to the number of plies.

The next step is to substitute in the actual modified Kirchhoff

displacements given by equations (1), (2), and (3) into equation (18). It is

noted that for terms involving gradients in z, only those terms that are

dependent on z need be retained. Thus, equation (18) becomes

I
I
I
I

m9



lu 0- z( 0 + H(z1) D) + H(z1) u D I n

iv0- z(*0 + H(z1) * D) + H(z1) VDI ny

I H(zt) wDJ nz

[-z( *° + H(zi) 41) + H(zi) vD] nz +

(N) f [ [w + H(zt)wDI ny dS
A L S 0 0) D

[-z(o ° + H(zi) B) + H(zi) u1l nz +

(w0 + H(z1 ) wDJ n x

Lu0- z(o0 + H(z1 ) B ) + H(z1) u] n +

1Jvo- z(*o0 + H(z1) 4- ) + H(z1) Vol n~

n Mm n [Qkk(zk- Zk-l) '4M' k  (19)
k=1

m The next step is to integrate equation (19) over S1 and S2- This

result will be simplified by separating the extensional and rotational terms

over SI into two different separate terms. On the delamination surface, SP

nz is assumed to be the only nonzero component of the unit outer normal

because the integration is performed with respect to undeformed coordinates.

The surface S1 represents the external boundary of an equivalent local

volume which contains no cracks. Therefore, it is assumed that no cracks

intersect Si. It follows that the terms containing the superscript 0 are all

zero on S1 .  Therefore, integrating the undamaged displacement terms in

equation (19) on S1 gives

m
I
I
I
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I

I "upx C EX
{N I n 0

L f [Q] 0 01 A wFny k(Zk- zk-1) "EyzI WPnx .xz

ulny+ v~n~ 'Exy (20)

I
In a similar manner, the rotational displacements acting on S1 result in the

average mid-plane rotations which when integrated over S1 yield the average

curvatures of the laminate. Thus, the undamaged rotations in equation (19)

Iare defined as
0

0nx  Lx

0 2n 2 0CLy
{N2 } 1 zSQ] nIzQ E k IQ zk ) I

k-1 [QIk k-n k-i

,ny + n ILXY (21)IY

U where {KL } denotes the average midplane curvatures.

Now consider the integration of equations (19) over the delamination

surface S2 . Because the integration is performed in undeformed

coordinates nx = ny =0, nz = ±1, and the integral simplifies toI
I
I
I
I 11



I

I 0
li 0

0

SH(z 1) won
_A i z dS
L S2  D(z0)[vp j* n

D DI (zi),o _(j z(,,z
I0

* 0

* 0
0won z

A f [IQ] 1  o dS
1=1 L S21  In1  Z(*i)Inz

D 0

u z(Oi)Inz

0 (22)

where d is the number of delaminated interplies and S2i is the surface area

of all delaminations in VL in the ith ply interface.

Now again consider Fig. 6. The integration for a typical delamination

given in equation (22) must be carried out over both top and bottom surfaces

I of the crack faces. Since the matrix (Q] is in most applications constant but

with different values on each crack face the displacement terms in equation

(22) may be written in the following form

I
I
I
I
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I

0 0
d 0 0

i Nt 1f (rQIr ef wt n dS+ [Q] Bf w D n dS)
3 i=1 AL STzI B i Z

T o

0

the bottom crack face.

Now suppose furthermore that the average displacements at each ply

interface, represented by the two integral terms in equation (23), are

I symmnetric about the ply interface. It follows that

{N d 0D24
IN3I 1 1 01-1(4D

a2 1

* 0

* where

[Q]T + [QIB

[Qli 1 2 i (25)

I
and the following components of the delamination ISV are now defined

13
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I

I70_ f w~n dS(2a

K1~Vi S 21

D 2 f D n (26b)

D L2 f u1 n dS(2c

andI
VLI- tI AL (27)

where t I is defined to be the thickness of the two plies above and below the

delamination, as shown in Fig. 6. In addition, it is assumed thatm T. It is noteworthy that the definitions of the internal state21 -21*

variables (ISV's) given by equations (30) are similar to those given for

matrix cracking 119,201. In the current paper 01, aDi, an represent

average crack opening displacements in the ith deplied interface in the z, y,

and x coordinate directions. It can be seen that for these three components

of the ISV for delamination the local volume VL is represented by the ply on

either side of the delamination.

m Now consider the rotation terms in equation (22)

I
I
I
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0
0

{} d 00
{N -I f Q] -z*1  n dS4 i- A~ L, [Q11

0

*0 0
0 00 0

L z (2[Qj f T -4,i n zdS + z IQi 8 -01 n zdS)
ALs 21  -s D s21 -B1D

\I 0 .0 . 0 (28)

The above may be written

*0 0
0 0

d0 0
T OTB -08{N441 (z i (Z 1 [i -*. zi [Q~I -*i

-OT . -OB

0B0 (29)

U where

I 0T ~ l*ndS 
(30 a)

* 21

OT 10 _ 1 5  D BndS 
(30b)1 A L T zI S21

15



f 1n.ndS (30c)

L
21

8-1 °n dS (30d)

* 21

I are the average rotations on the top and bottom crack surfaces in the

delaminated ply. It is now assumed that the average rotation is independent

of z between delaminations. Thus, since nz  - nz =

I
-D -0B  -DT i=1 ,d-1
04(1+1) =-  = -* i+1

05i1) -OB -OT l1..d (31)
I

05(i+1) --- = -Bi+1 "

Suppose we also defineI
D -O-T -0 -01T

D -08 D -08 8 (32)04(d+1) ": *dI 5(d+1) -dI
as shown in Fig. 7. Equation (29) may then be written as follows:

I
m
I
I

16I
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0 d 0
TN4  = 4 + I (- z I[Q) 1.. + Zj [Q] T 0

M4 0i fQ 1o4 1=2 o- 1 1 4o 0

i0 0

0Sz 0

0

0'5 (d+l1
0 (33)

I

Now let

Then, equation (37) may be written

o
0

-d+1 0

(4) = ( 1 - i-1) f[Q 2] 041

D

I 051
0 (35)

I

where, by definition

I17
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=-0I Q] B Z0+. z ~ [T +1 101 (36)

I

Equations (20), (21), (24), and (35) may now be substituted into equation (19)
~to give

1

(N)I IQ kE=1 kz l

*0 Q I
0 0

d t d+1 0
+ 1 i 1  + I (z 1 - z

1
-
1) 

I
2 11  a

1=1*21 0'4 14
D 0

c1~31 05 1
0 0

- [Qk (zk  Zk-1) {0M)k (37)

Ii
The moment resultants are obtained in a similar manner to the force

resultants. Applying the divergence theorem to the moment resultants given in

equation (15), z must be transferred inside the displacement gradients. Thus,

equation (15) is written as

I
I
I
I
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I

7x-(zu)I (zv)
Mt/2 1 -(zw) - w~{M) = IQ] 3 dxy {L " zdz (8

-t/2 [ L A 2.(zv) - v + (zw)

I(zu) - u + (zw)
az ax
ayx
Lj(zu) + (zV)

where equation (13) has been utilized to obtain the above result.

Note that the terms involving gradients in z yield extra terms for which

i the divergence theorem does not apply. Applying the divergence theorem to

equation (38) gives

zu nx  0
Zvny 0
ZWnz{M Q] S-1 f I]dyz

A L S z v nz+ z wn dxdydz

z u n z + z w nx  VL u

z u ny z v nx 0

I n2 2 M (9
2 ky (Qlk(zk -Zkl1) (a (39I k=l

It is now assumed that the applied moments are independent of rigid body

motions. Therefore, the second term in equation (39) may be neglected.

The modified Kirchhoff displacements are substituted into equation (39)

Ito give

I
19I
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I

[u - z +S H(z1 ) B1 ) + H(z1 ) uDI nx

Ov- z(*0 + H(z1 ) *D) + H(z1 ) VD] fy

I H(z1) w0) n

(-z* o+ H(z1) *i) + H(z1 ) vil nz +
f [w° + H(Z)WD] nyz

AL S 0]  z dS

[-z(B + H(zi) 81) + H(z1) u11I n z+I ,(wo+ ,(z,) WD, n,
U l(w O + H(z i ) 8tD) + H(z, ) U I ny +

Uv°- z(0 + H(z1) *) + H(z ) vDI n

I i

n Q 2z2_ (0N(0
I - 'kk Zk-) " (40)

I
The next step is to Integrate the first term in equation (40)

over S, and S2. Again, this result will be simplified by separating the

extensional and rotational terms over S1  into two different terms. Thus,

equation (40) becomesI
U

I
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[u + H U1I nx

Iv + H vi1 ny
I~~~ ~~ {M S1 [ ] Hw nz

(MH IQ] z w z dS
L S1 HU nz+ two+ HiwD ] nx

H ~ Ion+[w H w1 i
I lu°+ H u1 ny+ [v°+ HivD] nx

0 D

I[so+ H I(oi)] nx

I - '1. 0[ + Hi(')], fly z2 dS

L S 10

I o, 1(41)) nz

i1o+ H1( 1 )] ny

0

I 0o+H,(oi), nx

D

I -" f I'2QI HlDnlvDz,) no ( zdS

I I n[ Z -[ ) {(*)I n(

I0

'I

+ in 2Q 2 N z

k= 1

Integrating the undamaged displacement terms in equation (41) on S1 gives

I
i, 21

I



I
I U~o -

I ny E
(M} 1 zdS I IQ]k 2~
1I L Sw~fly kI kz-Z-

wgnx
LuJny+ vl~nx  Y-xY (42)

I

I Similarly,

(M f [Q] *on z zdS E- 1 ~ k - y

onz 0 0LXZ

o ny+* n x  KLxy (43)

Now consider the term in equation (41) which is integrated over S2 .  Because

the integration is performed in undeformed coordinates nx - ny -0. nz = _ 1,

m and this term reduces to

I
I
I
I
I
I
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0

0

H(zi) wDn

L IQ] zdS =

S2  H(z1)(vi - z(.i)Jnz
D D

H~zi)[ - Z(oi)flnz

0

0

m 0

0 0

ill AL S21  [v1 QZ(*)n z

*0 D
l Z(Bi)Ilnz

0(44)

where d is the number of delaminated interplies and SA is the surface area

of all delaminations in VL in the ith ply interface.

Integrating the displacement equation (44) over the top and bottom

delamination surfaces gives

0 0

M( zQ wI .,Q f s + riQIB f w0  n s)(3 im1 AL ST ni d z1  S 8 1  z

* 2i 0

Io v(45)
.0 0O
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where superscripts T apply to the top crack face and superscripts B apply to

the bottom crack face.

Now suppose furthermore that the average displacements at each ply

interface, represented by the two integral terms in equation (45), are

symmetric about the ply interface. It follows that

0

0
dD

([3(

0

where

i([Q T + IQ]
[Q3 1i 1  (47)1 31i 2t i

l Now consider the rotation terms in equation (44):

2
I
I
I
I
I
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0
0
0

4[QJ -z *i nzdS
1m L S21  20

0

0 0
0 0

o 0
d 1  21 T0 28 B

T -(z1 IQI1 i n dS + z IQ]1  I n dS)

i-iL 21  8D21 0

o 0 (48)

The above may be written

0 0
o 0
0 0

(412 T -0OT 2 B -08

-OT -OB
-01 -0
o 0 0 (49)

Now let

_z2_ IQ]BI+ B Z2 IQ]T
1 14I 1 (50)

(z- z11

Then, equation (49) may be written
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0
0

d~l 0(MI 2 _2 D

4 1 1
0'i
0 d(51)

Equations (42), (43), (46), and (51) may now be substituted into equation (41)

to give

n n
{M) I1 I Q) 2 2 fo, (Z _ _ '2{ k-l k (zk - zkl){eL - kl (Q2k Zkl) L

-0 0

0 0
d 0 d+l 0
+ 2I *ll + 2 2Q1(1 -Zl

| - i tiZQ~ (z0 z q i_ 1) {0" 5'
D 0

o 03 5

I 1 2 ( M (2
T k~lk k - k-1) k 52
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COMPARISON OF MODEL PREDICTIONS TO EXPERIMENTAL RESULTS

The suitability of the above damage-dependent laminate analysis equations

must be assessed by comparing displacements predicted by the damage model to

experimentally measured values. This is accomplished herein by comparing

model predictions to the damage-degraded engineering modulus, Ex , of several

laminates determined from tensile coupon tests. A limited number of test

results have been obtained for AS-4/3502 graphite/epoxy laminates with a

quasi-isotropic and several cross-ply stacking sequences. The combined matrix

cracking and delamination damage modes were generated by tension-tension

fatigue loading (R=O.1) at 2 Hz and the engineering modulus of the laminate

was measured by a 1.0 in. extensometer.

A reasonable indication of the validity and usefulness of the postulated

damage-dependent laminate analysis equations may be obtained by comparing

results obtained for a somewhat simplified but nonetheless realistic laminate

with damage. The special case considered herein is a symmetric, balanced

laminate subjected to an in-plane loading Nx and with a single delamination

interface site that is symmetric about the laminate midplane. Defining the

engineering modulus as follows

Ex = 1 aN x  (53)

and using equation (37), the damage-dependent engineering modulus is given by

Exa I 1 n -M t (Q15)1 + (Q15) 3 (4

E n kl (Qll)k "n k1 (Q l )k (a x)k +  [ 2 (54)
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mwhere aM and aDare the only contributing ISV's for matrix crack damage and

delamination damage, respectively, for the special case of interest here. The

procedure for specifying the value of the ISV for a particular damage state is

presented in Reference 22 and makes use of the strain energy release rate for

crack surface area creation. The expression for the matrix crack ISV

specified for a single 90° ply is given by [221

l. - 1) 
(55)

q 122 xo S

where n is the number of consecutive 90° plies in the 900 layer, p is the

number of 0° plies, q is the number of 900 plies in the laminate and Exi/ExolS

was determined experimentally for the [0/90/01s laminate containing a single

90' layer with matrix crack surface area, S. Using the O'Brien [301

delamination strain energy release rate model as a first approximation the

delamination ISV is given by

amx n (Ex - E) S(
at 2 T 8 (56)

x [(15 1+ (Q15)1]

where n is the number of plies in the laminate, SD is the delamination surface

I area, S is the total interface surface area of the local volume, and E* is

l given by

1 dE a-f I lilti (57)

where Ei is equal to Ex for the sublaminates and t i is the thickness of the

sublaminates formed by the delamination. Therefore, equations (54-57) may be

used to predict the damage degraded engineering modulus of any symmetric,
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balanced laminate with one symmetrically located delamination site.

A comparison of the model prediction of Ex to experimental results is

presented in Table 1 for the [02/9021s and [0/±45/901s laminates. The damage

degraded modulus has been normalized by the initial undamaged modulus. X-ray

radiographs of the damage states are shown in Figs. 3 and 8 for the

[02/9021s and [0/±45/90]s laminates, respectively. The comparison between

the theoretical and experimental results is quite good. While this is a very

limited comparison, the results are very encouraging because the stiffness

loss in the [02/90 21s laminate is primarily due to matrix cracking, whereas

the stiffness loss in the [0/±45/901 s laminate is primarily due to the

delaminations.

SUMMARY AND CONCLUSIONS

This paper has presented a formulation of a cumulative damage model for

continuous fiber composites in the presence of matrix cracking and interply

delamination. The model represents a set of damage dependent laminate plate

equations. The laminate equations were developed utilizing classical

Kirrhhoff plate theory as well as standard continuum mechanics. The key

developments of the theory are enumerated below:

1. The damage is reflected in the laminate equations through the second order

tensor-valued internal state variables. These ISV's are dependent on the

observed surface area of damage. The emphasis of this research has been to

obtain a consistent definition of the ISV for interply delamination.
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2. Although the ISV's are defined similarily, they enter the formulation in

different ways. The ISV for matrix cracking enters at the ply level

through alteration in the lamina constitution because this damage is fully

contained within the cracked plies. The ISV for interply delamination

enters at the laminate level through alteration in the Kirchhoff

displacements. This is due to the fact that the delamination occurs at the

interface of dissimilar materials, which results in statistical

nonhomogeneity and thus cannot be reflected through changes in the lamina

constitution. The separation of the ISV's between lamina and laminate

behavior was a major part of the model development.

3. Because the ISV for interply delamination represents the three out-of-plane

strain components, an anisotropic material response must be assumed in

order to couple the out-of-plane strains with the in-plane laminate

forces. Therefore, all six components of the strain are accounted for in

the overall constitutive response. This assumption was a key part of the

model development which eventually led to the consistent definition of the

ISV for interply delamination.

4. By averaging the modified kinematic relations over the local domain of

interest and then applying the divergence theorem the actual definition of

the ISV was obtained.

5. The local anisotropic properties were defined in terms of the response of

the sublaminate, created by the delamination, to the applied "Jump"

displacements.
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6. The ISV's have been related to the surface area of damage using linear

elastic fracture mechanics. By determining the energy release rate for

each damage mode the ISV's are fully defined.

A total of three new changes were introduced to the standard laminate

equations: 1) the ISV for matrix cracking, 2) the ISV for interply

delamination, and 3) the local anisotropic stiffness.

The ultimate objective of any continuum mechanics model is to design

structural components so as to avoid failure. In the sense that laminated

composites fail due to a complex sequence of damage events, it is essential to

capture the important features of the damage process in order to accurately

predict failure. Obviously this will be a complex task in laminated

composites, but, as Einstein once put it, a good theory should be as simple as

possible but no simpler than that.

The authors have constructed a continuum damage model for laminated

continuous fiber composites. This model utilizes second order tensor-valued

internal state variables to account for both matrix cracking and delamination

at the sub-laminate level in such a way as to produce a stacking sequence

independent model. The input properties may be obtained from a single

[0,90,01 specimen.

The model has thus far been shown to be accurate in predicting both in-

plane and out-of-plane stiffness loss in crossply specimens with both vertical

and curved matrix cracks. Efforts are currently underway to compare model

stiffness predictions to experiment for quasi-isotropic laminates with both

matrix cracks and delaminatlons. The initial comparison are quite

encouraging. Research is also underwsy to develop stacking sequence

independent ISV growth laws for matrix cracking and delaminations.
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The ultimate goal of this research is to develop a model capable of

predicting failure of a component subjected to loads resulting in stress

gradients. Toward this end, it is believed by these authors that the

essential ingredients are now in place for constructing a failure function

which describes fiber fracture as a function of matrix cracking and

delamination.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support provided for this research

by the Air Force Office of Scientific Research under Grant No. AFOSR-84-0067.

REFERENCES

1. Chou, P.C., Wang, A.S.D., and Miller, H., "Cumulative Damage Model for
Advanced Composite Materials," AFWAL-TR-82-4083, Air Force Wright
Aeronautical Laboratories, April 1982.

2. Waddoups, M.E., Eisenmann, J.R., and Kaminski, B.E., "Macroscopic Fracture
Mechanics of Advanced Composite Materials," J. Co "nsite Materials, Vol. 5,
pp. 446-454, 1971.

3. Hahn, H.T., "Fracture Behavior of Composite Laminates," Proc. Int.
Conference on Fracture Mechanics and Technology, Sigthoff, Noordhoff, Hong
Kong, 1977.

4. Morris, D.H. and Hahn, H.T., "Fracture Resistance Characterization of
Graphite/Epoxy Composites," Composite Materials: Testing and Design, ASTM
STP 617, Eds, American Society for Testing and Materials, Philadelphia,
PA., pp. 5-17, 1977.

5. Yeow, Y.T., Morris, D.H., and Brinson, H.F., "The Fracture Behavior of
Graphite/Epoxy Laminates," Experimental Mechanics, Vol. 19, pp. 1-8, 1979.

6. Schapery, R.A., "Models for Damage Growth and Fracture in Nonlinear
Viscoelastic Particulate Composites," MM-3168-82-5, Mechanics and Materials
Center, Texas A&M University, August 1982.

m 7. Schapery, R.A. "Continuum Aspects of Crack Growth in Time Dependent
Materials," MM-4665-83-2, Mechanics and Materials Center, Texas A&M
University, February 1983.

I i, ..... ......... _. .. 32



8. Chou, P.C. and Croman, R., "Residual Strength in Fatigue Based on the
Strength-Life Equal Rank Assumption," J. Composite Materials, Vol. 12,
April 1978, pp. 177-194.

9. Gottesman, T., Hashin, Z., and Brull, M.A., "Effective Elastic Properties
of Cracked Materials," N00014-78-C-0544, TR-6, ONR, May 1981.

10. Hashin, Z., "A Reinterpretation of the Palmgreen-Miner Rule for Fatigue
Life Prediction," J. Applied Mechanics, Vol. 47, June 1980, pp. 324-329.

11. Laws, N., Dvorak, G.J., and Hejazi, M., "Stiffness Changes in
Unidirectional Composites Caused By Cracked Systems," Mechanics of
Materials 2, (1983) 123-137, North Holland.

12. Dvorak, G.J., "Analysis of Progressive Matrix Cracking in Composite
Laminates," AFOSR-82-0308, Rensselaer Polytechnic Institute, March 1985.

13. Talreja, R., "Fatigue of Composite Materials: Damage Mechanisms and
Fatigue-Life Diagrams," Proc. Royal Society of London, A 378, pp. 461-475,
1981, Printed in Great Britain.

14. Talreja, R., "A Continuum Mechanics Characterization of Damage in
Composite Materials," Proc. Royal Society of London, Vol. 399A, 1985, pp.
195-216.

15. Coleman, B.D. and Gurtin, M.E., "Thermodynamics With Internal State
Variables," J. Chem. Phys., Vol. 47, No. 2, 1967, pp. 597-613.

16. Krajcinovic, 0. and Fonseka, G.U., "The Continuous Damage Theory of
Brittle Materials, Part I: General Theory," J. Applied Mechanics, Vol. 48,
1981, pp. 809-815.

17. Fonseka, G.U. and Krajcinovic, D., "The Continuous Damage Theory of
Brittle Materials, Part II: Uniaxial and Plane Response Modes," Journal of
Applied Mechanics, Vol. 48, 1981, pp. 816-824.

18. Krajcinovic, D., "Constitutive Equations for Damaging Materials," Journal
of Applied Mechanics, Transactions of the ASME, 83-APM-12, Houston, 1983.

19. Allen, D.H., Harris, C.E., and Groves, S.E.,"A Thermomechanical
Constitutive Theory for Elastic Composites with Distributed Damage - Part
I: Theoretical Development," to appear in International Journal of Solids
and Structures, 1987 (also reported in Texas A&M University Mechanics and
Materials Center, MM-5023-85-17, October, 1985).

20. Allen, D.H., Harris, C.E., and Groves, S.E.,"A Thermomechanical
Constitutive Theory for Elastic Composites with Distributed Damage - Part
Ii: Application to Matrix Cracking in Laminated Composites," to appear in
International Journal of Solids and Structures, 1987 (also reported in
Texas A&M University Mechanics and Materials Center, WM-5023-85-15,u October, 1985).

33

I



m 21. Groves, S.E., Harris, C.E., Highsmith, A.L., Allen, D.H., and Norvell, G.,
"An Experimental and Analytical Treatment of the Mechanics of Damage in
Laminated Composites," to appear in Experimental Mechanics, 1987.

22. Norvell, G., "An Investigation of Damage Accumulation in Graphite/Epoxy
Laminates," Thesis, Texas A&W University, 1985.

23. Georgiou, I.T.,"Initiation Mechanisms and Fatigue Growth of Internal
Delaminations in Graphite/Epoxy Crossply Laminates," Thesis, Texas A&M
University, 1986.

24. Allen, D.H., Harris, C.E., Groves, S.E., and Norvell, R.G.,
"Characterization of Stiffness Loss in Crossply Laminates with Curved
Cracks," to appear in Journal of Composite Materials, 1987 (also reported
in Texas A&M University Mechanics and Materials Center, WM-5023-86-14,June, 1986).

1 25. Jones, R.M., Mechanics of Composite Materials, McGraw-Hill, 1975.

26. Mindlin, R.D.,"Influence of Rotary Inertia and Shear on Flexural Motions
of Isotropic, Elastic Plates," J. Applied Mechanics, Vol. 18, (Trans. ASME
73) A31, 1951.

27. Reissner, E.,"The Effect of Transverse Shear Deformation on the Bending of
Elastic Plates," J. Applied Mechanics, Vol. 12 (Trans ASME 67) A67, 1945.

28. Reddy, J.N.,"A Refined Nonlinear Theory of Plates with Transverse Shear
Deformation," Int. J. Solids & Structures, Vol. 20, 1984.

29. Groves, S.E., u A Study of Damage Mechanics in Continuous Fiber Composite
Laminates with Matrix Cracking and Interply Delaminations," Dissertation,
Texas A & M University, 1986.

30. O'Brien, T.K., "Characterization of Delamination Onset and Growth in a
Composite Laminate," Damage in Composite Materials, K.L. Reifsnider, Ed., ASTM
STP 775, American Society for Testing and Materials, Philadelphia, pp. 141-
167, 1982.

34



TABLE 1 RESULTS FOR GRAPHITE/EPOXY LAMINATES

LAMINATE STACKING

SEQUENCE N 02/9021S 10/± 45/90]s

NUMBER OF CRACKS

PER INCH IN 90* LAYER 54 44

DELAMINATION INTERFACE 0/90 -45/90

PERCENT DELAMINATION 47.3 57.0

x-F EXPERIMENTAL 0.949 0.888
xo0

Xo- MODEL PREDICTION 0.939 0.878
xo0
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FIGURE CAPTIONS

Fig. 1. Axial stiffness loss in a [ 02, 9 021s graphite/epoxy laminate with

matrix cracking and interply delaminations.

Fig. 2. Matrix crack saturation in a 102,9021s laminate.

Fig. 3. Interply delamination in a 102,9021 s laminate.

300,000 cycles.

Fig. 4. Characteristic local region of damage. a) general laminate, b)

exploded view of VL with damage.

Fig. 5. Deformation geometry for region AL.

Fig. 6. Interply delamination in a laminated continuous fiber composite.

Fig. 7. Schematic of delaminated region in a composite layup.

Fig. 8. Combined damage mode in [0/±45/90] s due to tension-tension fatigue.
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Abstract

Continuous fiber laminated composites are known to undergo substantial

load induced damage in the form of matrix cracking, interior delamination,

fiber fracture, etc. These damage modes produce significant losses in

component performance measures such as stiffness, residual strength, and

life. The authors have previously constructed a general model for predicting

the response of laminated composites with damage. The current paper utilizes

the model to predict stiffness loss as a function of damage in quasi-isotropic

and angle-ply laminates with matrix cracks. It is shown that the model is

capable of predicting the stiffness loss for any layup by utilizing the same

input aata, thus producing a model which is independent of stacking

sequence. The favorable comparisons of the model to experimental results

reported herein support the validity of the model.
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Introduction

The thermomechanical response of laminated continuous fiber composites is

quite complex due to stress concentrations resulting from fiber-matrix

interaction and the layered orthotropy of the medium. The stress

concentrations resulting from this local material inhomogeneity are

significant in the sense that they may cause substantial impairment of

component performance. However, the development of microcracks can often be

utilized advantageously as a toughening mechanism. Just as the small scale

material inhomogeneity tends to initiate cracks, it also serves as a crack

arrestor. Thus, a field of microcracks develops, and the resulting loss of

local structural integrity causes load transferral which is similar to

plasticity in pure metals. Therefore, if the effects of microcracks in

laminated composites can be accurately modelled, it is possible to utilize a

greater portion of component life.

The difficulty in developing a useful model lies in the inherent

complexity of microstructural damage in laminated composites. Unlike pure

metals, it is not uncommon for laminated continuous fiber composites to

develop several different modes of damage such as matrix cracking, interply

delamination, fiber fracture, fiber-matrix debond, and fiber crimping. In

addition, there is significant interaction between the various modes of

damage. For example, interply delamination tends to initiate at the

intersection of matrix cracks in adjacent plies, and fiber fracture tends to

concentrate near the delamination sites. The cracks are so numerous and

diverse that any attempt to model each crack individually is hopelessly

complex. However, the scale of the cracks is usually very small compared to

the scale of the structural component. Because of this, it is possible to

2



assume that the body remains continuous and the effects of microcracks may be

introduced via appropriate spatially variable reductions in the elastic

constitutive properties. Such an approach is called continuum damage

mechanics (Kachanov, 1958; Kachanov, 1986).

The concept of continuum damage mechanics has been utilized extensively

over the past twenty-five years (Bazant, 1986; Krajcinovic, 1984; Krajcinovic,

1986). However, most applications have been for initially isotropic media.

Very few attempts have been made to utilize this concept for laminated

composite media (Talreja, 1985; Allen, Harris, and Groves, 1987; Weitsman,

1985). The primary difficulty has been the layered orthotropy of these

materials. The authors have recently developed a damage model which is

applicable to laminated fibrous composites (Allen, Harris, and Groves, 1987;

Allen, Harris, Groves, and Norvell, 1987; Allen, Groves, and Harris,, 1987).

This microstructural damage may be induced by mechanical loads or environment

such as elevated temperature. The model has been utilized to predict the

response of composite crossply laminates with matrix cracks, and these results

compare favorably to experiment (Allen, Harris, and Groves, 1987; Allen,

Harris, Groves, and Norvell, 1987), as shown in Fig. 1. The model has also

been developed for the case of combined matrix cracking and interply

delamination (Allen, Harris, and Groves, 1987; Allen, Groves, and Harris,

1987).

The purpose of the current paper is to demonstrate the use of the model

to predict various components of reduced stiffness for quasi-isotropic

laminates with matrix cracks in the off-axis plies, as shown in Fig. 2. It

will be shown that this can be accomplished by using experimental data from

Io,90,0, and f±4512s specimens, thus demonstrating that the model is

independent of stacking sequence. The paper will close with a comparison of
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Voigt notation. Note that since j is in general asymmetric

M M a M M M
i 1a l1 Q4 23 07 031

M M M M M M
02 a22 a5 032 08 012 (3)

M M M M M Ma3 Q33 06 013 a9 421

Although matrix cracks are sometimes observed to be curved (Allen,

Harris, Groves, and Norvell, 1987), it is assumed in this paper that all

matrix cracks are normal to the laminate midplane, as shown in Fig. 2. For

this case

n = 0e1+ 1 (4)

in ply coordinates. Therefore, the only non-zero components of M arear
M M M92 , a5 and a8 . Also, due to in-plane symmetry of each ply it is assumed

that a is negligible. Furthermore, it can be shown that I - -C (Allen,

Harris, and Groves, 1987), so that equation (2) reduces to

O= - Ci2a2 - Ci6o8  (5)

Standard laminate equations may be obtained from equations (5) by

utilizing the Kirchhoff hypothesis for thin plates. The resulting forces per

unit length, (NJ, are given by (Allen, Harris, and Groves, 1987; Allen,

Groves, and Harris, 1987)
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(N) z ICk(Zk Zk-1) } + 1 Ik(zk Zkl) L
k=1 k= I

- ICk(zk - Zk-1) [cM k  (6)
k=l

where n is the number of plies, E 0 are the midplane strains, {KLI are the

midplane rotations, and overbars denote that quantities are transformed from

ply coordinates to laminate coordinates. Similarly, the moments per unit

length, {M), are given by

mM) n 2 2 0 n 3 3

2 k= 1 kz k1 c k=l ~k k_1 K

i [ (zk(z - zk ) (a )MCkL k

k=k

Furthermore, the damage tensor { M} is transformed to global coordinates in

each ply. Thus, for the case of vertical matrix cracks

-M 2 M M
CLi  sin 2e 2 - sine cose a8

2 cos 2 e a + sine cose M

2_ 2 8

08= -sine cose a2 + cos2 0 M

8_ 2 8

S= -sine cose M sin 2 6 M (8)

where e is the angle relating the ply coordinates, denoted x-, to the laminate

coordinates, denoted xj, as shown in Fig. 4. All other components of are
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zero due to the previously discussed assumptions.

The components of the reduced stiffness, Sij, may be obtained by

differentiating equation (6) with respect to the midplane strains to obtain

1 1 aN1 n 3;-'
Sttd g etr j equa n (hF1)k tk aor) k

fli killnsformatioCn

a~ -MM -M
2 _ ) a a + - (I0)

i2)ktk(- 6)ktk( (9
aej

where h is the laminate thickness.

It has been previously shown (Allen, Harris, Groves, and Norvell, 1987)

that the damage parameters in equation (9) transform according to the

following transformation

3; M

ia 12 a a_ a- o c (10)
-0_ 0

ac_ Tp jq mr ns aers
mn

where aTp are the direction cosines relating the ply coordinates to the

laminate coordinates, given by

rcose -sine 0
[a-r T = sine cose 0 I(11)

0 0 1]

Therefore, it can be seen from equations (9) and (10) that the damage

dependent stiffness can be evaluated if the last term in equation (10) can be

determined. Since it was previously assumed that only a M = aMand
M M2

M M~1 are not negligible for the current application, it is necessary to
M 2 and12

evaluate aQa M/Br0an acll2 /acr0 To do this, first note that for the case of

vertical matrix cracks the damage induces orthotropy which is concurrent with
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INTRODUCTION

Fatigue induced damage in composite materials has been the subject of

numerous experimental investigations. The specific damage mechanisms have

been identified and the progression of damage is phenomenologically well

understood, as evidenced by numerous experimental studies documented in the

open literature. For example, the American Society for Testing and Materials

has devoted a number of Special Technical Publications (723, 775, 836, 876)

exclusively to the topic of damage in composites [1-41. While these

experimental investigations have been supported by analytical research, there

are relatively few mathematical models that predict the effect of damage on

the structural response of composites. Those that can be identified 15-9] are

either limited in scope or still under development.

The writers have formulated a very promising model that predicts the

stress-strain behavior of continuous fiber reinforced laminated composites in

the presence of microstructural damage. The model is based on the concept of

continuum damage mechanics and uses internal state variables to characterize

the various damage modes. The associated internal state variable growth laws

are mathematical models of the loading history induced development of

microstructural damage. The damage model addresses both extension and bending

and is developed in the form of modified laminate analysis equations for easy

implementation. This model of the stress-strain behavior of laminates with

fatigue-induced damage is the subject of this paper.

The continuum damage mechanics approach accounts for the effect of

microstructural damage on structural behavior through damage dependent

constitutive relationships. Locally averaged constitutive properties are

computed from a representative local volume sufficient to represent the damage

but small relative to the boundary value problem of interest. Thus, the
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effects of internal boundaries are reflected in constitutive equations rather

than internal boundary conditions. This is in contrast to the fracture

mechanics approach wherein each crack is treated as an internal boundary and

boundary conditions are specified on the crack faces. This is not a practical

approach to composite material systems that develop widespread load-induced

microstructural damage. On the other hand, continuum damage mechanics may be

used in conjunction with fraction mechanics to represent a macrocrack (via

boundary conditions) in a field of microcracks (via degraded material

constitution).

Continuum damage mechanics was first applied to metallic alloys in an

attempt to address issues in plasticity [101. Recently the concept has been

applied to composite materials, although the first applications were to

randomly distributed particulate reinforced composites [11,12). Several newly

developed models address matrix cracks in continuous fiber reinforced

laminates [6-81. Only two attempts [13,14] have been made to extend the

concept to include interply delaminations as well as matrix cracks.

This paper is a comprehensive survey of the model development research of

the writers. The emphasis is placed on describing the experimental

development of damage under fatigue loading and the application of the model

to predict the response of the damaged laminate. While the model is

completely documented herein, the detailed theoretical developments are given

elsewhere [5].

EXPERIMENTAL PROGRAM

There were three objectives of the experimental program. These were to

observe and document the progression of damage in laminated composites when

subjected to a tension-tension fatigue loading; establish fundamental damage

growth law data and strain energy release rate data required to specify the
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material constants in the model; and to generate experimental results for

comparison to the model predictions of the damage-dependent engineering

moduli. The material system selected for study was graphite/epoxy, AS-

4/3502. A comprehensive data base has been generated for a variety of cross-

ply and quasi-isotropic laminates and a limited data base is also available

for several angle-ply laminates.

The AS-4/3502 laminate panels were fabricated by a standard pre-preg tape

layup and hot press curing procedure. The panels were cured according to the

curing cycle recommended by the tape vendor. The following lamina properties

were measured: En = 21.0x10 6 psi, E22 = 1.39x10 6 psi, G12 = 0.694x10 6 psi

and = 0.310, where the subscript 1 refers to the fiber direction and 2

refers to the transverse direction. The fiber volume fraction was measured to

be approximately 65% and the average per ply thickness was 0.0052 in.

All fatigue tests were conducted by an MTS 880 computerized testing

system. The fatigue tests were run in load control at R = 0.1 and at a

frequency of 2 hz. The maximum stress was typically 70-75% of the laminate's

ultimate strength of the laminate. In most tests, a 1.0 in. gage length

biaxial extensometer was used to simultaneously measure axial and transverse

strain. In some instances only the axial strain was measured by a uniaxial

extensometer. While the dynamic modulus was monitored continuously, the

"static" axial modulus and Poisson's ratio of the laminate were determined at

various intervals throughout the test by interrupting the cyclic loading and

running standard monotonic tensile tests. At these same intervals, the damage

state was documented by x-ray radiography and edge replication. A few

selected specimens were destructively examined by sectioning and viewing in

the scanning electron microscope to better understand the local damage states.

The tensile test coupons were 1.0 in. wide and 11.0 in. long. Epoxy end
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tabs were used to minimize the local effects of the wedge-action friction

grips. Since 1.0 in. gage length extensometers were used to measure the

strain in the 1.0 in. wide specimens, the cross-sectional area of the local

volume was taken to be 1.0 in2. Therefore, the damage evaluations

characterized the damage state in the 1.0 in. x 1.0 in. gage length region

over which the damage-dependent strain was measured. Whenever the damage

state is quantified herein, it will be understood to be for this 1.0 in2

region;

EXPERIMENTAL CHARACTERIZATION OF FATIGUE DAMAGE

The first mode of damage to develop in the typical cross-ply laminate was

matrix cracks in the 90' plies. Extensive matrix cracking typically developed

during the first loading cycle. Matrix crack saturation in the 90 plies

occurred early in the fatigue life with very little additional crack formation

thereafter. The second mode of damage was matrix crack formation in the 00

plies. These so-called axial splits began to develop at about the same time

that the matrix cracks saturated in the 90' plies. After a period of matrix

crack growth in the 0* plies, delaminations began to form at the intersection

of the crossing matrix cracks in adjacent plies. Continued cyclic loading

resulted in a growth and coalescence of the delaminations. Fiber fracture

also occurred in regions localized near the matrix cracks in adjacent plies.

Extensive fiber fracture could not be readily observed nondestructively and no

additional damage modes were observed prior to catastrophic failure of the

specimen. This progression of damage is illustrated in Fig. 1 by the series

of x-ray radiographs of the [02/9021s laminate. Figure 2 shows a photographic

enlargement of the fully developed damage state in the [02/9021s laminate

taken at 400,000 cycles with Smax at 75% of SULT" Figures 3 and 4 present

similar information for the (0/9021s laminate with the fully developed damage
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state taken at 1,003,000 cycles with SMAX at 71% of SULT. Finally, Fig. 5

shows the fully developed damage state in a [0/9031, laminate taken at 200,000

cycles with $max at 73% of SULT -

The x-ray radiographs of Figs. 2, 4 and 5 show two fundamentally

different damage states. Notice that the axial splits in the [02/902]s

laminate, Figs. 1 and 2, are continuous throughout the photographic field of

view. Also, the delaminations tend to grow in an axial direction along the

splits. On the other hand, the axial splits in the 10/9021s and 10/9031,

laminates, Figs. 3-5, are not continuous and typically terminate in the

photographic field of vision. Also, these splits tend to develop across the

laminate width prior to exhibiting extensive axial growth. The delamination

patterns are somewhat similar and tend to form at adjacent crossing crack

locations across the specimen width prior to growing and coalescing axially.

This pattern is clearly illustrated in Fig. 5. The differences in these

damage growth patterns may be quite important when developing damage growth

laws and can be qualitatively explained by the differences in the local stress

states of these laminates [15].

The progression of damage in quasi-isotropic laminates also originated

with matrix cracks in the 90° plies followed by matrix cracking in the 450

plies. While the matrix cracks in the 90° plies appear to saturate, this was

not observed to be the case in the 45* plies. Also, unlike the 90° plies, the

matrix cracks in the 450 plies do not typically extend completely across the

plies and tend to form in local patterns. This is illustrated in the x-ray

radiograph, Fig. 6, of a (90/t45/O s laminate where many short cracks in the

-45° plies lie along the longer cracks in the adjacent +45 plies. It is also

obvious from Fig. 6 that extensive edge delaminations developed rather than

interior delaminations at matrix crack crossing points. This same type of
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damage pattern occurred in the 0/t45/90 s laminate as shown in Fig. 7. In

both laminates, catastrophic failure precipitated by the massive free edge

delaminations occurred prior to the observation of interior delaminations at

crossing cracks. This may be an important observation relative to the

development of the damage growth laws. However, once the delaminations are

present in the local volume there may be no fundamental difference between the

effect of free edge induced delaminations and interior delaminations on damage

dependent laminate properties.

The axial modulus was observed to decrease with increasing damage in all

laminates studied herein. The cross-ply laminates typically exhibited a rapid

rate of change in the modulus while the matrix cracks formed in the 900 plies;

whereas after saturation the rate of modulus degradation was quite slow while

the axial splits and delaminations grew. Just prior to fracture the modulus

was observed to change rapidly. This is probably due to extensive coalescence

of delaminations and fiber fracture. The quasi-isotropic laminates exhibited

a similar pattern, although somewhat more dramatic changes in the modulus

occurred with the development of the free edge delaminations. Quantitative

values of axial modulus and Poisson's ratio will be given in a later section

when the model predictions are compared to the experimental results.

MODEL DEVELOPMENT

The writers have developed a model that predicts the response of

laminates with both matrix cracks and interior delaminations such as the

damage states described in the previous section. This problem is complicated

by two factors. First, because these two damage mechanisms are oriented

differently, they require two separate tensor-valued damage parameters.

Furthermore, the mechanics of these two damage modes are substantially
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different. The matrix cracks may be assumed to be statistically homogeneous

over each ply in a small local volume element. Therefore, classical local

volume averaging may be used to obtain this damage parameter. On the other

hand, delaminations are not statistically homogeneous in the z coordinate

direction. This requires that a modification be made to statistical averaging

techniques. Although statistical homogeneity is assumed in the x and y

coordinate directions, a kinematic constraint similar to the Kirchhoff-Love

hypothesis is applied in the z direction. The resulting damage parameter is a

weighted measure of damage, with delaminations away from the neutral surface

causing a greater effect on laminate properties.

The model development proceeds from the assumption that all material

inelasticity is contained within small zones surrounding the microcracks. The

effect of matrix cracks on ply level constitutive equations is accounted for

via the local volume average of the diadic product of the crack opening

displacement vector u and the crack face normal n c

1

i ~ f uinjds()
ij uLL Sc

KLS C

where VL is the local volume for which cracking can be considered

statistically homogeneous, and Sc is the surface area of matrix cracks in

VL. For matrix cracking, VL is typically one ply in thickness. The ply level

stress-strain relations are therefore given by

ij = C ( E - ML) (2)ij ijki ki - i

where C ijk is the elastic (undamaged) modulus tensor.

In order to account for interply delamination the following kinematic
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assumption is made (See Fig. 8.):

u(x,y,z) = u0(x,y) - zIs ° + H(z-zk)BkJ + H(z-zk)u (3)

v(x,yz) = vO (x,y) - zl@ 0 + H(z-zk) ' k + H(z-zk)Vk (4)

and

w(x,y,z) = w0(x,y) - H(z-zk)WD (5)

where u and v are components of the in-plane displacement, w is the out-of-

plane displacement, and H is the Heavyside step function. Furthermore, B and

represent rotations of the midplane. The quantities with superscripts o are

undamaged midsurface values, and quantities with superscripts D are caused by

interlaminar cracking. Finally, a repeated index k is assumed to be summed

from one to the total number of delaminated ply interfaces.

Employing standard laminate averaging techniques will result in the

following laminate equations

n n

0 0
0 0

d I Di d+1 0

+ 11 i ti 0 + 1 (zi - zi_1 ) t 2 1i 4
=L2i i=1 4 i

aD
a3i 5i

0 0

nk IQ k (zk - zk-l) IaM k (6)
k=1

8



1M n 2 z2 a 1 nd 3 3 K2M k=1 1Q'k (Zk - k~ (LI-3 1 k (zk L k~ ) 

ku

o 0
0 0

[ 2 'li + d.1 ( 2 0[ Z Q31i ti  0 i 4 lli --ziI)  D
32i =4i

0 0
'i3 Q5n

-in z2 _z2_ M 7
2 k [lkkkk 1k (7

where (N) and (M) are the resultant forces and moments per unit length

respectively, and {a and (aL1 represent the damage due to matrix cracking

and interply delamination, respectively. Furthermore, n is the number of

plies, and d is the number of delaminated ply interfaces, as shown in Fig. 9.

The internal state variable for delamination, { D), is obtained by

employing the divergence theorem on a local volume element of the laminate.

The resulting procedure gives [131

0 2 0S f w~n dS (8a)
I zLi S21

2 f - v~n dS (8b)"2i L Li $2i

D 2_ f UnzdS (8c)'31= VLi S2i

D f I * nzdS (8d)

2i
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i L SB Iz
21

where the subscript i is associated with the ith delaminated ply interface.

Furthermore, VLi is equivalent to tiAL, where t1 is the thickness of the two

plies above and below the delamination, as shown in Fig. 10. By definition,

the z component of the unit normal, nz, is equivalent to unity.

Furthermore, the matrices [QI with subscripts k are the standard elastic

property matrices for the undamaged plies. The matrices IQJ with subscripts i

apply to the ith delaminated ply interface. They represent average properties

of the plies above and below the delamination. These are described in further

detail in reference 13.

Determination of E. and uW. for the Mixed Damage Mode

Now, suppose that one is interested in modeling stiffness loss as a

function of damage state. In order to do this, it is necessary to construct

the (stacking sequence independent) material parameters developed in the

previous section. The loading direction engineering modulus, E,, and

Poisson's ratio, Uxy, of the laminate are defined as

1 aNx

1 aNx
t 3C

U xy 1 _(I0

f 5Cy

where t is the laminate thickness.

For the purpose of comparing the model predictions to experimental
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results, we will confine this development to the case of a symmetric, balanced

laminate with delamination sites symmetrically located with respect to the

laminate midplane. For this special case, {e}=O and the fourth term in

equation (6) is zero. Furthermore, ai=O and the third term in equation (6)

is the same for both delamination sites. Substituting equation (6) into

equations (9) and (10) results in the following expressions for Ex and uxy

nM 00
Ex n + 2( 2 + 3

= n I (Q1)k (  - aT k + 2(2) (Q14 --- + ( a1k=1 x x

n M a0  a

n k~l (Q12)k~l - C y k n ()(Q1 4-T, - +15 a3 yU = - 1 (12)
xy n aM 2- 0

1 (Y)( 1  a~ + 2( 2)(Q 2 - + -n k=1 (Q22)k(l Ey )k  y 24 3y +25 a

where it is assumed that all plies have the same thickness so that

z k - Zk_1 = tply (13a)

Ply _ (13b)
t n

t1 2 (13c)
t n

Furthermore,

IQjk Q12  Q22  Q23  Q24  Q25  Q26 (14)

LQ16 Q26  Q36  Q46  Q56  Q66j
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It has been previuusly shown 1131 that

N -T--B
- 11011 -(5
x15 tL T I (15)
Lxz 1

N

14 -T -8Q2Q2 (16)

L yz Q2 - Q12

N -T--BN2 Q T21Q21 B(7_i_ = (17)
L2 =Cxz Q21 - Q21

and

N -T -4
S Q22Q22 (18)
C2 L -T -8
yzQ2 2

where the superscripts A and B designate the properties of the ply imediately

above and below the delamination, respectively.

Determination of Internal State Variables

Implementation of equations (11) and (12) to predict the damage degraded

laminate moduli requires the specification of the partial derivatives of the

internal state variables with respect to strain for a given damage state. In

the absence of growth laws, the damage state must be determined

experimentally. Expressions for the internal state variables have been

previously developed by the authors [61 by employing energy principles. In

the original constitutive theory formulation 151 the local energy loss

contribution to the Helmholtz free energy is directly related to the internal
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state variables as follows:

Ic
uL = liji j + H.O.T.' S (19)

where contracted notation is employed. Furthermore, the local energy loss is

also directly related to the fracture mechanics based strain energy release

rate for crack creation during load-up

u L LI M(G + GI M) dS + L f (GD) dS (20)
UL L S IM M VLSO

where G, and G are the mode I and II strain energy release rates for

matrix cracking, GD  is the strain energy release rate for internal

delaminations, SM is the matrix crack surface area, and SD is the delamination

surface area. Neglecting the higher order terms and equating equations (19)

and (20) Drovides a direct relationship between the internal state variables

and the damage state. Therefore, the internal state variables required by

equations (11) and (12) may be specified for a given damage state provided

appropriate expressions for the strain energy release rates are known.

In the case of matrix cracking in cross-ply laminates where only the

opening mode of fracture is involved the authors have developed the following

expression

3M E xE
x I (p+q) Exo 0 1 (21)

7cx  =m q E22 0SM

where m is the number of consecutive 900 plies, p is the number of 00 plies, q

is the number of 900 plies, Exo is the initial undamaged modulus, and ExI

is the damage-degraded modulus corresponding to matrix crack damage state
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SM1 . The term in the parentheses was determined experimentally from tests

on a [0/90/01s laminate and is given by

X x = 0.99969 - 0.061607 S +004623 S 2 (22)

Finite element studies have shown that the effects of adjacent layer

constraint on the energy released by the 900 layers is a second order effect

1161. Therefore, by using the following second order tensor transformation

-3M M

-= a a a a (23)
aT L ip Jp mr ns 3I mn ars

where no bars refer to the crack coordinate system and the over bars refer to

the laminate coordinate system, equation (21) is generally applicable to

matrix crack damage in any ply of any laminate stacking sequence.

In the case of off-axis plies, other than 900, the tensor transformation

law given by equation (23) also requires the determination of aa 2/ac for

matrix crack damage. This damage parameter is related to shear deformation at

the ply level which gives rise to the sliding mode of relative crack face

displacements. Considering a [±45 12s laminate where each ply is more-or-less

in a state of pure shear equations (19) and (20) reduce to [16]

a 012 (G12)EXP] (24)
- = 2 [1- (24)

where (G12)EXP is interpreted as the effective shear modulus for the damaged

ply and is computed by

(G12)EXP 2(x (25)
x 

1
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(G12)EXP/(G12 )0  = 0.822 for SEXP corresponding to 21 cracks per inch in each

ply of the [_4512s. Since the plies of the [±4512s are in pure shear,

expression (24) may be used to determine ac12/3E12 for any ply with matrix

crack damage. The fiber (crack) orientation of the cracked ply is accounted

for by the coordinate transformation given by equation (23).

The delamination internal state variable was determined from energy

principles as well, except O'Brien's [171 strain energy release rate model was

used rather than experimental results. Since O'Brien's model assumes that the

strain energy release rate is independent of the size of the delamination, the

internal state variable is linear in delamination surface area. Therefore,

aa D (Exo- E )3 -n 0 D 26
x (26)

where n is the number of plies in the laminate, SD is the delamination area

and S is the total interfacial area in the local volume. E* is the modulus of

the sublaminates formed by the delamination and is given by

d
E T Eit i  (27)E= i=1

where d is the number of sublaminates and t is the laminate thickness. By

similar reasoning,

Saa n (E Yo- E* S

3 y 2 24 ) (28)

Finally, as a first approximation for the cross-derivatives in equations (11),

and (12), we have
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M S 3LM

= S12 aEx 
(29)

y 22  3x

3 = (30)

y 22 cx

C S12  3a

(31)ax -11 ax

where Sij is defined by the following undamaged laminate stress-strain

relationships using the first term of equation (6)

S = aN x  (32)

1 aNY (33)
$22 =t 3y

1= aN x (34)

As an example, consider the case of cross-ply laminates where the delamination

site is at a 0/90 interface. Equations (11) and (12) reduce to the following

simplified forms

n M S
EX  Ex(1 nE k (11)k(. x) k _ (1 - E)(--D)] (35)

x Ex0 kl3x 2 x
__________SD

x u - 2( n E11+ E22  + )( (36)

where E11, E12 and u12  are the standard ;amina properties.
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COMPARISON OF MODEL PREDICTIONS TO
EXPERIMENTAL RESULTS

While the damage-dependent laminate analysis model may be used to predict

any of the effective engineering moduli of a laminate, experimental results

are only available for the axial modulus and Poisson's ratio. Therefore, the

general utility of the model will be demonstrated by comparing model

predictions to experimental results for EX and vxy for the fully developed

damage states illustrated in Figs. 2,4,5-7. The delamination interface

location was determined experimentally and the delamination area was estimated

from the x-ray radiographs using an optical planimeter procedure. In both the

model analysis and data reduction, it was assumed that the delamination sites

were symmetrically located about the laminate midplane and contained the same

delamination surface area.

The bar chart of Fig. 11 compares the model predictions to the

experimental values of the engineering modulus, Ex, for combined matrix

cracking and delamination. The delamination interface location and percent of

delamination area are listed in the figure underneath the laminate stacking

sequence. As can be seen, the comparison between model results and the

experimental results is quite good. Some limited results for Poisson's ratio

are given in Fig. 12 using the same bar chart format. With the exception of

the [O/902Js laminate, these results are also quite good. The experimental

value for the 10/ 9 0 21 s laminate is quite suspicious since this laminate

exhibits a much larger change in Poisson's ratio than the other laminates

without a corresponding difference in the delamination surface area. It

should be noted that values of Poisson's ratio for the quasi-isotropic

laminates are not available.
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SUMMARY AND CONCLUSIONS

The authors have formulated a constitutive model for laminated composites

with both matrix cracks and delamination damage. The model is based on the

concept of continuum damage mechanics and uses second-order tensor valued

internal state variables to represent each mode of damage. The internal state

variables are the local volume averaged measure of the relative crack face

displacements. The local volume for matrix crack damage is at the ply level,

whereas the local volume for delamination damage is at the laminate level.

Therefore, the damage-dependent constitutive model takes the form of laminate

analysis equations modified by inclusion of the internal state variables.

This paper demonstrates the applicability of the model to predict the

degraded engineering modulus, Ex, and Poisson's ratio, Uxy, of quasi-

isotropic and cross-ply laminates of graphite/epoxy. The comparison between

model predictions and experimental results is very close. The authors submit

that the good agreement reported herein supports the validity of the model

formulation and the physical interpretation of the internal state variables.
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Fig. 2 Enlarged X-ray Radiograph of Damage in a 102/9021s Laminate at 400,000
Cycls wth max =75% of SULT
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Fig. 3 Progression of Damage in a [0/9021s Laminate
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IFig. 6 Enlarged X-ray Radiograph of Damage in a 190/±45/01, Laminate at
50,000 Cycles with Smax i, 73% of SULT



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Fig. 7 Enlarged X-ray Radiograph of Damage in a IO/±45/9QI~ Laminate at

17,000 Cycles with Sma ~ = 76% of SULT

I
I



At I

VL 2

A 1 01

A

z s

Fig. 8 Deformation Geometry for Region AL



* izi

±44 ---- - -z

d-1 -in-.

d -Ia

d 8 d+1

Fig. 9 Schematic of Delaminated Region in a Composite Layup



ti

S B

Fig. 10 Interply Delamination in a Laminated Continuous Fiber Composite



Damage-Dependent Laminate E x

1.00,

.969

962
0 0 .949

.939
0 0

.926

.915 %0%#%' %.%-%J 91
.-- 910,,1• J. gP

% 888
% % % %% % % 878

N 86 .863

0.800

%~~~~~ Deaiain1.% 2.% 4.% 5% 570 52.0%

De. Interac /0 00 0 

L t nu D by B Vtrxaca Dmt % %Daag

% %%#• % % %
•  

% % %
11% , %.% % , % % 1 %-

0-0- - 1%%1 1% . %0 1 .%%1

%• I %#• 0 % %1'%.,%.- ',%"%.

% % %%%S % % %.••

N,% % V •%•%V% %••• % %
% % I% % %% % %% % %% %•

% % % % % %• %#•#S••%, %: ,, V
11 0#w 41• ••

% Nb •,,,.-,~ ~ ~0 ;,-; .,,...,,

La int [09 1 09 S [ 2 /9 21 [09 3 IS [0± 459 [9/. 45S

% Deain o 166 2.% 495 35.% 57.% 52.0% %

070~'"" "' " =,1'

Lainate Enginerin Modulus Exs Degraded by90 Bot [0 .±45t9ix Cracking0

%~ ~n Delamination 166D2.%m9age.3 7.% 520



Damage-Dependent Laminate u

1.0 y

.907
0.9I 0°9 --

-- .834 .82 9-'I--
~%%0.8 ?.

~II769 #J•t

BI',, ,.757

.722 .724
bll%

I

y -0.7 -'U%•# % % %

li Iv, ti,

0.6.

0.6, V, 
%

viiizz %v, %vi %v

% % Z-Z- -- % 4'' % %

.%"'.481 .

J i 0iveO 11v .. vv

0 .4 . .% .

Laminate [O/90]s S02/9021s [0/9021S [0/9031s

% Delamination 16.6% 49.5% 24.2% 35.3%

Del. Interface 0/90 0/90 0/90 0/90

experimental [ .... model prediction

Fig. 12 Comparison of Experimental Results and Model Predictions of the
Laminate Engineering Poisson's Ratio, v xy Degraded by Both Matrix
Cracking and Delamination Damage

!
I



Appendix 7.6



Damage Modelling In Laminated Composites

by

D.H. Allen
C.E. Harris

Aerospace Engineering Department
Texas A&M University

College Station, Texas 77843

and

S.E. Groves
Lawrence Livermore National Labs

Livermore, CA 94550

Proceedings IUTAM/ICM Symposium on Yielding,

Damage and Failure of Anisotropic Solids

Grenoble, France

1987



Damage Modelling In Laminated Composites

by

D.H. Allen
C.E. Harris

Aerospace Engineering Department
Texas A&M University

College Station, Texas 77843

and

S.E. Groves
Lawrence Livermore National Labs

Livermore, CA 94550

Abstract - In this paper a damage model is presented for laminated continuous

fiber composites. Because of the layered anisotropy of the medium of

interest, at least two distinct orthotropic damage modes are observed in

laminated composites: matrix cracks and interply delaminations. Due to

statistical inhomogeneity in the coordinate dimension normal to the plane of

the laminate, second order tensor internal state variables are constructed

which represent a weighted average of both matrix cracks and delaminations.

It is shown herein that linear elastic fracture mechanics may be utilized

to construct the parameters necessary to characterize the material properties

in the stress-strain-damage constitutive equations. The resulting model is

then independent of the stacking sequence and ply orientation in the

laminate. Recently obtained comparisons of model predictions to experimental

results reported herein support the validity of the model.



1. Introduction

The first application of continuum damage mechanics is attributed to L.M.

Kachanov (81. In this method it is recognized that the exact analysis of a

multiply connected domain with numerous microcracks is hopelessly complex.

Therefore, the effects of these microcracks on macrophysical response are

reflected via one or more internal state variables 1141 called damage

parameters. The initial use of damage mechanics appears to have been a

logical one. It was observed that in metals classical plasticity theory

breaks down when significant grain boundary sliding and/or microcavitation

occur because the initial elastic properties are not observed on unloading

[151.

In the last twenty years there has been an incredible expansion of

research in damage mechanics, as evidenced by two recent review articles

[5,11,121 and the publication of the first textbook devoted entirely to damage

mechanics 191. However, as pointed out in reference 12, although substantial

research has been performed on metals, concrete, and geologic media, very

little research has been detailed on laminated composite media. In fact, to

these authors' knowledge, only three concerted efforts have reached the open

literature at the time of this writing. These are due to Talreja 116-201,

Allen, et al. [1-41, and Weitsman [211. In fact, the first two authors of

this paper became acquainted with Dr. Talreja in the summer of 1983, while the

latter was on sabbatical at the Virginia Polytechnic Institute and State

University. At that time Dr. Talreja was completing his first paper on the

subject, while the current model was just beginning to be formulated. Due to

discussions at that time, the current model owes some credit to the work of

Dr. Talreja. Doubtless there are numerous other applications of damage
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mechanics to laminated composites on the threshold of making their way into

the literature. However, we are unaware of them at the time of this writing.

The principal difficulty in laminated composites, unlike metals and

concrete, is that the layered orthotropy of the medium produces multiple

damage modes, each possessed of some degree of anisotropy. Therefore, whereas

it is often sufficient to deal with a single isotropic (scalar valued) damage

tensor in initially isotropic and homogeneous media, this simplicity cannot be

utilized in laminated composites. Furthermore, each of the damage mechanisms

is interrelated and extremely difficult to distinguish experimentally.

Finally, the damage may not be considered to be statistically homogeneous

through the laminate thickness. Nevertheless, the application of continuum

damage mechanics to laminated composites appears to be a fruitful quest

because the most obvious alternative would be to attempt to solve a highly

anisotropic multiply connected boundary value problem.

An example of a composite laminate with two distinct modes of damage is

shown in Fig. 1 [71. In this example, there are matrix cracks in the

crossplies and delaminations at the ply interfaces. Note that the cracks are

oriented and statistically nonhomogeneous in the out-of-plane coordinate

direction. Experimental observation 161 indicates that the matrix cracks are

load induced, whereas the delaminations are driven by stress concentrations at

the matrix crack tips. Therefore, significant interaction of the damage modes

is observed. Although not shown in the figure, there are often additional

damage modes observed prior to component failure, including fiber-matrix

debonding, fiber fracture and fiber crimping and/or buckling in compression.

An excellent review of the genesis of these events is described in further

detail in reference 19.

3



The ultimate objective of any continuum mechanics model is to design away

from failure. In the sense that laminated composites fail due to a complex

sequence of damage events, it is essential to capture the important features

of the damage process in order to accurately predict failure. Obviously this

will be a complex task in laminated composites, but, as Einstein once put it,

a good theory should be as simple as possible but no simpler than that.

2. Model Development

The authors have been developing a model for predicting the constitutive

behavior of laminated continuous fiber composites [1-41. This model utilizes

the concept of continuum damage mechanics, in the sense that the effects of

microcracks are reflected via internal state variables (ISV's) in the

constitutive equations, rather than treating each microcrack as a separate

internal boundary. Furthermore, the model is phenomenological because only

the average macroscale effect of microcracking is modelled rather than the

effect of each individual crack. Because cracking is not statistically

homogeneous in the coordinate direction normal to the laminate, statistical

weighting is necessary in this direction, and this is accomplished via

kinematic constraints. Therefore, the constitutive equations are laminate

equations, rather than standard stress-strain equations.

A continuum damage model must contain four essential ingredients in order

to be complete: 1) stress-strain-damage equations; 2) damage growth laws for

the damage ISV's; 3) a failure function describing local failure in terms of

the damage ISV's and observable state variables; and 4) an algorithm for

solving boundary value problems in which the state is nonhomogeneous. If

steps one through three can be accomplished accurately, then step four is

4
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relatively straightforward, involving a procedure not unlike extending an

j elastic algorithm to include plasticity. Steps two and three tend to be the

most complex, especially for laminated composites. Although there has been

some research on these two components of the model, the authors would consider

this work exploratory at this time. The subject of the current paper is step

one. The fundamental difficulty in this procedure is to develop a model which

is independent of ply orientation and stacking sequence. Of course, the

ultimate goal of this research is step three, to predict failure as a function

of the current damage state.

Research is currently underway to extend the model to predict the

response of laminates with both matrix cracks and interior delaminations 131,

as shown in Fig. 1. This problem is complicated by two factors. First,

because these two damage mechanisms are oriented differently, they require two

separate tensor-valued damage parameters. Furthermore, the mechanics of these

two damage modes are substantially different. The matrix cracks may be

assumed to be statistically homogeneous over each ply in a small local volume

element. Therefore, classical local volume averaging may be used to obtain

this damage parameter. On the other hand, delaminations are not statistically

homogeneous in the z coordinate direction. This requires that a modification

be made to statistical averaging techniques. Although statistical homogeneity

is assumed in the x and y coordinate directions, a kinematic constraint

similar to the Kirchhoff-Love hypothesis is applied in the z direction. The

resulting damage parameter is a weighted measure of damage, with delaminations

away from the neutral surface causing a greater effect on laminate properties.

The model development proceeds from the assumption that all material

inelasticity is contained within small zones surrounding the microcracks. The

effect of matrix cracks on ply level constitutive equations is accounted for

I
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via the local volume average of the diadic product of the crack opening
Scc

displacement vector ui and the crack face normal n. [111:

M uinjds (1)
'ij V L S I j

where VL is the local volume for which cracking can be considered

statistically homogeneous, and Sc is the surface area of cracks in VL. For

matrix cracking VL is typically one ply in thickness. The ply level stress-

strain relations are therefore given by

Gij = C- clkQ) (2)

In order to account for interply delamination the following kinematic

assumption is made (See Fig. 2.):

u(x,y,z) = u°(xy) - ziB 0 + H(z-zk)0kD + H(z-zk)u (3)

v(x,y,z) v0(x,y) -z* 0 + H(z-zk) 0k] + H(z-zk)V (4)

and

w(x,y,z) = w0 (x,y) - H(z-zk)wk (5)

where u and v are components of the in-plane displacement and w is the out-of-

plane displacement and H is the Heavyside step function.

Furthermore, B and represent rotations of the midplane. The quantities

with superscripts o are undamaged midsurface values, and quantities with

superscripts D are caused by interlaminar cracking.

6



Employing standard laminate averaging techniques will result in the

following laminate equations 131

n Q 2 (z z_2
(N} I IQ'k (zk - zk-l) fL -L I IQ1 ( k 1) fI[

k=l =

0 0
0 0

d D d+1 0
+ Ql1i ti 0 + Z (z i 2i 0
ic 2i 4i

D D
c3i 05i
o 0

n
- 1 k (zk - Zkl) 'aM'k  (6)

k=1

{) n2 2 oC01( 3 z3 (

2 k= I Qk (zk - zk_) L- 3 IQ'k (k - z ) (KL

o 0
o 0

d0d+1 0

DNli + 2 2

i=1 3 i D + - [Q4 i(zi - Zi-) D
c2i 04i

D D
CL3i 'L5i
0 0

1 2 M
2 k klQk (z - Zkl) a 'k (7)

7Ij



where (N) and (M) are the resultant forces and moments per unit length

respectively, and {M and {a L} represent the daMagL due to matrix cracking

and interply delamination, respectively. Furthermore, n is the number of

plies, and d is the number of delaminated ply interfaces, as shown in Fig. 3.

The internal state variable for delamination, ( }, is obtained by

employing the divergence theorem on a local volume e'2ment of the laminate.

The resulting procedure gives 131

o11 2 w~n dS (8d)
VLi S2 I

0 2_ von dS (8b)
02i V Li S 2i

D 2 1 u~nzdS (8c)
3i = VLi $2i

OL D 1 10 Dn dS (d4i A Lz (8d)

2i

D5i A BDnzdS (8e)

S2 i

where the subscript i is associated with the ith delaminated ply interface.

Furthermore, VLi is equivalent to tiAL, where ti is the thickness of the two

plies above and below the delamination, as shown in Fig. 4.

Furthermore, the matrices LQI with subscripts k are the standard elastic

property matrices for the undamaged plies. The matrices [QI with subscripts i

apply to the ith delaminated ply interface. They represent average properties

of the plies above and below the delamination. These are described in further

detail in reference 3.

8



3. Determination of Ex for the Mixed Damage Mode:

Now, suppose that one is interested in modeling stiffness loss as a

function of damage state, In order to do this it-is necessary to construct

the (stacking sequence independent) material parameters developed in the

previous section. To dc this, consider a symmetric balanced laminate so

that {KL = {0) and define the loading direction engineering modulus of the

laminate to be

1 aN
x t 9Ex  (9)

DifferentiaLing equation (6) yields

M T + B aD

E 1n x 1 d (Q15)i +  (Q15)i I _ i
= (Q11)k n I (11)k (ac ( )k + t { 2 i 3EE nk=1 k= x i=1 x

1 d+1 B D
zi - Zil(Ql 5 ) i _ + zi(QlT 5( i +1) (10)

where Q11 Q12 Q13 Q14 Q15 Q16

1Q'k = Q12 Q22 Q23  Q24 Q25  Q26  (11)

QI6 Q26 Q36 Q46 Q56  Q66

and the superscripts T and B represent the plies above and below the

delamination, respectively.

For the case where delamination sites are symmetrically located about the

laminate midplane and with equal damage, the last term in equation (10) is

zero.

Thus,

9



M TB Dn a M  d CL1) Q5) =i(2

x k= (Q11)k(1 - )k +  ii 2 3] Et B
k= =1 2 (2

Now consider a single delamination site (d=1)

n aM )T + 83 0
E 1 

- t (Q15) + (Q15)1  3 (13)Ex = n .K1Q1Yk(  - Ex)k +t- 2 3E-- (3
k=1 ae k

where tI  2tply and t = nt ply for all plies having thickness tply* Finally,

it can be shown that

T B I + I
(Q51+ (Q1 5 )1  (Q11 1 + (Q14)2= (14)2 2

where

QII = Q11c s4 6 + 2 (Q12 + 2Q66 ) sin
2  cos 2 e + Q22sin

4a  (15)

Therefore, Ex reduces to

n a M 1 ' D

Ex  I ( - a)k + [(II )  + (QII) B (16)
nk=1 1Y 3Ex n Ex

If we now consider the energy loss associated with one symmetric

delamination site and ignore any energy loss associated with crack

interactions, the energy loss in the local volume is given by

c I0 H..
uL = 6 ELI + H.O.T. (17)

10



Neglecting the higher order terms as was done in the original constitutive

model formulation 11,21, the local energy loss may be expressed in laminate

form as
i c iD D

L 16"x '3 (18)

where

D6n (5)T + (a 15 )1B (19)

By restricting the energy loss to that associated with crack creation during

loadup, we may use fracture mechanics concepts to express the local energy

loss as follows

u c 1 dS (20)L V L STGDd

where VL is given by tS, t is the laminate thickness, S is the total area of

the interface, SD is the delaminated area (SD < S), and GD is the delamination

strain energy release rate. Equating these two expressions for uc yields the
uL

following general expression for the delamination ISV

D 1 - f GodS (21)(13 1 D t S x SD

16 x D

We now need an expression for the strain energy release rate of

delamination. As a first approximation we will use O'Brien's strain energy

release rate model 113] which was developed for free edge delaminations. This

model has the advantage of accounting for both the laminate stacking sequence

and the delamination site(s) without requiring laminate specific experimental

data. The strain energy release rate is given by

x2t .

GD = x (EM- E) (22)

11



where ELAM is equivalent to Ex, t is the laminate thickness, d is the number

of sublaminates formed by delamination(s), Ei  equals Ex  for the ith

sublaminate, ti is the thickness of the ith sublaminate, and

E E i t i  (23)

Since GD is assumed to be constant in S in the previous

expression, D reduces to

2
D 1t 2 (Ex - E SD (24)

=3 I16 x

Substituting for I16 and rearranging gives

D n (E x -E) S D(5
3 2 'x )T + B

[(&15 1 (Q15)l1

or

D(E -E*) D
3 n (!D) (26)

Now substituting expression (26) into (16) yields

in aM SD

Ex =1 (Q)( I - (Ex - E )(-D) (27)
n k=1 (Q l k (Ex k -

By dividing by the initial undamaged modulus, Exo, we obtain the following

expression for combined matrix cracking and delaminations:

12



Ex

I~1 n 3 M E* SD

Ex°  = nE k= (Q11)k (ax)k E (1 - Ex ( ) (28)

I This expression is valid for the following case: 1) A symmetric, balanced

laminate; 2) two delamination sites located symmetric with respect to the

laminate midplane with equal damage at each interface; 3) the strain energy

release rate is not a function of the delamination surface area; 4) there are

no energy losses associated with crack interaction; and 5) the ISV's are

linear in strain (ex ) on unloading and subsequent reloading prior to new

damage formation.

An expression for the ISV for matrix cracking was previously developed in

reference 2. For matrix crack damage in a single 90* ply,

lx n XO±q !o xl (29)
=E 2 q 122 Ex- SM1

where n is the number of consecutive 900 plies in the 900 layer, p is the

number of 0° plies, q is the number of 900 plies in the laminate, Ex X/Exo was

determined experimentally for the I0,90,01s laminate containing a single 900

layer, and SM1 is the matrix crack surface area at time ti.

Equations (26) and (29) provide quantitative values of the ISV for

delaminations and matrix cracks, respectively, and require only the value of

the current damage state, SD and M I* Equation (28) may thc- be used to

predict the damage-dependent loading-direction modulus of the laminate at the

current damage state. The mathematical expressions explicitly account for the

effects of laminate stacking sequence, relative matrix crack damage in each

ply, and the delamination interface site. Aside from the standard laminate

analysis material constants, the damage model only requires the experimental

13
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determination of the current damage state. (Research is currently underway to

establish ISV damage growth laws which will predict the values of the ISV's

directly from the loading history of the material.)I

l 4. Comparison of Model Predictions to Experimental Results

The suitability of the above damage-dependent laminate analysis equations

must be assessed by comparing displacements predicted by the damage model to

experimentally measured values. This is accomplished herein by comparing

model predictions to the damage-degraded engineering modulus, Ex, of several

laminates determined from tensile coupon tests. A limited number of test

results have been obtained for AS4/3502 graphite/epoxy laminates with a quasi-

isotropic and several cross-ply stacking sequences. The combined matrix

crackirg and delamination damage modes were generated by tension-tension

fatigue loading (R=0.1) at 2 Hz and the engineering modulus of the laminate

was measured by a 1.0 in. extensometer.

A comparison of the model prediction of Ex to experimental results is

presented in Table I for 10 2/9 021sS 10/9031 s  cross-ply laminates, and for

I0/±45/90] s and 190/±45/0] s quasi-isotropic laminates. The damage degraded

modulus has been normalized by the initial undamaged modulus. X-ray

radiographs of the combined-mode damage state are shown in Figs. 5 through 8

for the laminates listed in Table 1. The comparison between the theoretical

and experimental results is quite good. While this is a very limited

comparison, the results are very encouraging because the stiffness loss in

the cross-ply laminates is primarily due to matrix cracking, whereas the

stiffness loss in the quasi-isotropic laminates is primarily due to the

14



delaminations.

5. Summary and Conclusions

The authors have constructed a continuum damage model for laminated

continuous fiber composites. This model utilizes second order tensor-valued

internal state variables to account for both matrix cracking and delamination

at the sub-laminate level in such a way as to produce a stacking sequence

independent model. The input properties may be obtained from a single

[0,90,01 specimen.

The model has thus far been shown to be accurate in predicting both in-

plane and out-of-plane stiffness loss in crossply specimens with both vertical

and curved matrix cracks. Efforts are currently underway to compare model

stiffness predictions to experiment for quasi-isotropic laminates with both

matrix cracks and delaminations. The initial comparisons are quite

encouraging. Research is also underway to develop stacking sequence

independent ISV growth laws for matrix cracking and delaminations.

The ultimate goal of this research is to develop a model capable of

predicting failure of a component subjected to loads resulting in stress

gradients. Toward this end, it is believed by these authors that the

essential ingredients are now in place for constructing a failure function

which describes fiber fracture as a function of matrix cracking and

delamination.
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Table 2 Comparison of Model Predictions to Experimental Results
with Matrix Cracks and Delaminations

LAMINATE STACKING
SEQUENCE '02/9021s [0/9031 s  10/± 45/9 01s 190/t4 5/01s

NUMBER OF CRACKS
PER INCH IN 90° LAYER 54 38 44 18

DELAMINATION INTERFACE 0/90 0/90 -45/90 +45/-45

PERCENT DELAMINATION 47.3 17.2 57.0 52.0

Ex EXPERIMENTAL 0.949 0.910 0.888 0.860

x
0

ExMODEL PREDICTION 0.939 0.918 0.878 0.863
I x

0

I

I
I
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AI8STkACT The first application of continuum mechanics
is attributed to L.M. Kachanov Ill. In this method
it is recognized that the exact analysis of a

A damage-dependent constitutive model for multiply connected domain with numerous microcracks
laminated composttes has been developed for the is hopelessly complex. Therefore, the effects of
combined damage modes of matrix cracks and these microcracks on macrophysical response are
delaminatlons. The model is based on the concept reflected via one or more internal state variables
of continuum damage mechanics and uses second-order 121 called damage parameters. The initial use of
tensor valued internal state variables to represent damage mechanics appears to have been a logical
each mode of damage. The internal state variables one. It was observed that in metals classical
are defined as the local volume average of the plasticity theory breaks down when significant
relative fra dlacisplaceents . Since the local grain boundary sliding and/or macrocavitation occur
volume for delaminations is specified at the because the initial elastic properties are not
laminate level, the constitutive model takes the observed on unloading 131. In the last twenty
form of laminate analysis equations modified by the years there has been an incredible expansion of
internal state variables. Model implementation is research in damage mechanics, as evidenced by two
demonstrated for E. and u of quasi-isotropic recent review articles 14,5,61 and the publication
and cross-ply laminates. Thiymodel predictions are of the first textbook devoted entirely to damage
in close agreement to experimental results obtained mechanics 171. Although substantial research has
for graphite/epoxy laminates, been performed on metals, concrete, and geologic

NTRODUCT ION media, as pointed out in reference 12. very little
research has been detailed on laminated composite

It is a well established fact that composite media. In fact, to these authors' knowledge, only
material systems develop extensive patterns of three concerted efforts have reached the open
matr alystems dagel asaesutensivecaten or literature at the time of this writing. These aremicrostructural damage as a result of mechanical or due to TalreJa 18-12J, Allen, et al. 113-161, and

environmental load history. Many composite Weltsman 1 17A.

structures are damage tolerant because they retain

load-carrylng capacity and structural integrity The authors have developed a model for
after the development of microstructural damage. predicting the constitutive behavior of laminated
The physical properties of the material system are continuous fiber composites (13-161. This model
altered by the damage and, furthermore, the utilizes the concept of continuum damage
developmert of the damage is a precursor to mechanics. The effects of microcracks are
structural failure. Using the concept of continuum re-lected via internal state variables (ISV's) in
damage mechanics, the authors have developed a the constitutive equations, rather than treating
constitutive model for fiber-reinforced laminated each microcrack as a separate internal bound! y.
composites which includes the influence of Furthermore, the model is phenomenological because
microstructural damage on the stress-strain only the average macroscale effect of microcracking

behavior of a composite structure. The influence is modelled rather than the effect of each
of the combined damage modes of matrix cracking and individual crack. Because cracking Is not
delamination on the laminate engineering modulus, statistically homogeneous in the coordinate
E, and Poisson's ratio, u xy is the subject of direction normal to the laminate, statistical
t;s paper. weighting is necessary in this direction, and this

is accomplished via kinematic constraints.I



lherefore. the constitutive equations are lawinate the surface area of Cracks In V,. For matrix
eluationS, rather than standard stress-strain cracking, V is typically one ply in thickness.
equations. The ply ]evJ l stress-strain relations are therefore

given by

The objective of this research effort Is to N
extend the model to predict the response of 1Jtj - Cijk&(Lki - "ki) )
laminates with both matrix Cracks and interior

delaminatlons 1151. as shown in Fig. 1. 1I1is In order to account for interply delamination
-problem Is complicated by two factors. First. the following kinematic assumption IS made (Set.
because these two dauage mechanisms are oriented Fig. 1):
differently, they require two separate tensor-
valued damage parameters. Furthermore, the u(xy.z) =u (x.y) - zl a H(Z-Zk)

mechanics of these two damage modes are
substantially different. The matrix cracks may be * H(Z-Zk)uk (3)
assumed to be statistically homogeneous over each
ply in a small local volume element. Therefore, 0

classical local volume averaging may be used to v(x.y.z)- v (Xy) - zi* H(Z-Zk)wkl
obtain this damage parameter. On the other hand, (
delaminations are not statistically homogeneous in l i(z-zk)v4the z coordinate direction. This requires that a

modification be made to statistical averaging and
techniques. Although statistical homogeneity is
assund in the x and y directions, a kinematic w(x.y.Z) - i°(x~y) - H(z-Zk)wk (5)
constraint similar to the Kirchhoff-Love hypothesis
is applied In the z direction. The resulting where u and v are components of the in-plane
damage parameter is a weighted measure of damage, displacement and w is the out-of-plane displacement
with delaminations 'away from the neutral surface and H is the Heavyside step function. Furthermore.
causing a greater effect on laminate properties. and * represent rotations of the midplane. The

quantities with superscripts 0 are undamaged
midsurface values, and quantities with superscripts
D are caused by Interlaminar cracking.

Employing standard laminate averaging
techniques will result in the following laminate
equations 1151

n
(N) I Mi ltk (zk - zkl) ('L

k.1

1 I 2 _ 2

h o d e e r s frob 
k( I" Zk)k z2k1) L

0
0

d0

£ 2
0

c.. I Ceffelct Linattoi matrix Cracks and p31

ieelcntiortuSFti quton 0sacute o

0

MODEL DEVELOPMENT d 0

The model development proceeds from the + (z z D

assumption that all material inelasticity ISD
contained within small zones surrounding the 5
microcracks. The effect of matrix cracks on ply 0i
level constitutive equations is accounted for via0
the local volume average of the diadic product of

the crack opening displacement vector u and the
crack face normal nc n (6)

I 1Q1k (Zk k-k c 1k(
k-1

M - unjdS (1)

where V is the local volume for which cracking can
be cons'idered statistically homogeneous, and Sc is
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Furthermore, the matrices IQI with subscripts 1t-1 2 (13c)

k are the Standard elastic property matrice- for t n

the udamageJ plies. 1he matrices 1QI with furthermore, damage introduces local anisotrrpy So

subsCriptS I apply to the Itn delaminated ply that

Interface. They represent average properties of
the plies above and below the delamination. These [011 012 Q13 Q14 015 016
are described in further detail in reference 18. 'Q

1k " 12 Q22 Q23 Q24 Q25 Q26  (14)
Q16 Q%6 Q36  Q46 Q56  Q66 I

DETERMINATION OF E and ,, FOR THE MIXED DAMAGE

MOULL y It has been previously shown 1181 that

Suppose that one is interested in modeling &14 I ( 12 + 2(15
stiffness loss as a function of damage state. In
order to do this, it Is necessary to construct the I A (6
(stacking sequence independent) material parameters 415 ' (Q11I+ 1l)  (16)
developed in the previous section. The loading
direction engineering modulus, E . and Poisson's - OA + (,a
rutto. Uxy , of the ldoi|llate dru d01 Ir".d wsa &i (Q) 2 22 ) (17

11 25,I(A Qe (18)
Ex z 

1  
A 

(9) 12 + 2)
t 3CX

where the superscripts A and B designate the
properties of the ply immediately above and below

1 x the delamination, respectively.
t ;E

* (10) OETERMINATION OF INTERNAL STATE VARIABLES

It ac Implementation of equations (11) and (12) to
Y predict the damage degraded laminate moduli

where t Is the lamlhate thickness, requires the specification of the partial
derivatives of the Internal State variables with

For the purpose of ccmparing the model respect to strain for a given damage state. In the
predictions to experimental results, we will absence of growth laws, the damage state must be
confine this development to the case of a determined experimentally. Expressions for the
symmetric, balanced laminate with delamination internal state variables have been previously
sites located symmetrically with respect to the developed by the authors 114,151 by emloying
laminate midplane. For this special case, ()-0 energy principles. In the original constitutive
and the fourth term in equation (6) is zero. theory formulation 1131 the local energy loss

Fcontribution to the Helmholtz free energy is
Furthermore, ai- 0  and the third term in equation directly related to the internal state variables.

(6) Is the same for both delamination sites. Furthermore, the local energy loss is also directly
Substituting equation (6) into equations (9) and related to the fracture mechanics based strain
(10) results in the following expressions for E. energy release rate for crack creation during load-
and u up. Therefore, expressions for the internal state

Uxy Mvariables have been developed from expressions for
EX ik1  x the strain energy release rate for each damage

n mode. In the case of matrix cracking in cross-ply
k 1 x laminates,

*2(1)(& . a 5 3 (11) IX * 
1 m~I±i ) (

n 14 acx i afx c q 22E 0
5

2 SMI

'~ **~-1 d(014 L where m is the number of consecutive 90' plies, pI(.. is the number of 0' plies, q is the number of 90'
U 0

1 (O124(0 *) 2" 11024  plies, E Is the initial undamaged modulus, and
Ex  is Ae damage-degraded modulus corres~onding

where it IS assumed that all p~le, have the same to Latrix crack damage state SM . The term In
thickness so that the parenthesis was determined exierimentally froo

tests on a 10/90/1 laminate and is given by

Zk - Zk.l " tply (13a)I
t (- 0.99969 - 0.061607 S * 0.04623 S2 (20)

In0 S
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Finite element studies have shown that the effect, ih
uf adjacent layer cOnstraint on the energy releases x (28)
b) the 90' layers is a second order effect 1191. II t a,
Therefore, by using tie following second order &N
tensor transformation 1191 law S - (29)

22 t 3(.
y

M N I 4Nx
a a a a (21) 12 t ac (30)

-ip jp r ns a s

an rs
Consider tne case of cross-ply laminates where

thc delamination site is at a 0/90 interface.
where the unbarred quantities are in the crdck Equations (11) and (12) reduce to the following
coordinate system and the barred quantities are in simplified forms
the laminate coordinate system, equation (19) is
generally applicable to matrix crack damage in any n aN1
ply of any laminate stacking sequence. E E O1 (--. I I (Q

The delamination Internal state variable was 0 0 k.1 x

determined trom energy principles 4s well, exc4jt , S
O'Brien's 1201 strain energy release rate model was
used rather than experimental results. Since )2 (1
O'Brien's model assumes that the strain energy 0
release is independent of the size of the
delamination. the internal state variable is linear 1 2 E 2
in delamination sirface area. Therefore, Uxy Uxyo(I n E 1+E

(E" [ S) S D (32)

3 n 0 S-0  n'Y
x - - I -S( ) (22) where E E 12 and u12  are the standard lamina

415 propertid.Eli 2

where n is the number of plies in the laminate. SO  EXPERIMENTAL PROGRAM
is the delamina tion area and S is the total
interfacial area in the local volume. E* is the A limited experimental program has been
modulus of the sublaminates formed- by the conducted to verify the accuracy of the
delamination and is given by constitutive model formulation. Experimental tests

have been conducted on tensile specimens from a

,(23) number of quasi-isotropic and cross-ply
Etti laminates. The material system is AS4/3502

i! graphite/epoxy with E11 -?I.OX106psi (144.8 GPa),

where d is the number of sublaminates and t is the E22-l.3gxlO6 psi (9.58 Us) u12-0.310 and
laminate thickness. By similar reasoning.. (.2-0.69010 andGl2-O.694x10

6psi (4.79 OPa). The fiber volume

a (Ey -C) fraction is approximately 65% and the per ply
2 n (TOsD (24) thickness is 0.0055 in. (0.132 mm). The loading-

at Y (24)direction modulus and Poisson's ratio were measured
y24 by a blaxial extensometer with a 1 in. gage

length. Damage was developed under tension-tension
Finally, as a first approximation for the cross- fatigue at 2Hz and R-O.1. The progression of
derivatives in equations (11), we assume that damage was documented by periodic examinations by

H M Sx-ray radiography and edge replication. ModulusA S2 ax (2) measurements were taken at each examination.
a-' =" _7-

S 22 ax COMPARISON OF EXPERIMENTAL RESULTS TO MODEL

3 12 D PREDICTIONS

acy 2  a,6 The comparison of model predictions to
experimental results for E. and Uxy are displayed

aO S12 013 in graphical form in the bar charts of Figs. 5 anda - 1 - (27) 6. respectively. Matrix cracks in the 90' layers
are at* the Saturation damage state for all
laminates. The delamination interface location and

where SIj is defined by the following undamaged percent of delamination Is listed under the
lamInate stress-strain relationships using the laminate stacking sequences in the bar charts. It
first term of equation (6)

5



Damnage -ependent Laminlate I~ Should be noted that the Poisson*% ratio values for
I QQthe two quasi-isotropic laminates are not given

because they were not measured experimentally. The
comparison between the experimental results and

7 model results is quite close for Ex hoxieer.
there are some discrepancies In the comparison of

va lues. The authors attribute these
discrepancies to the difficulty in measuring

,7 Poisson's ratio. Because Poisson's ratio Is quite
small far cross-ply laminates. the measurement is

0 more Sernsitive to experimental error.

~. ~ SUWARY A14D CONCLUSIONS
(E.

The authors have formulated a constitutive
"' model for laminated composites with both matrix

o ~',~...cracks and delamination damage. The model is based
on te cncep ofconinuu daagemechanics And

M use~s second-order tensor valued internal state
X.*variables to represent each mode of damage. The

\.* ... internal state variables are the local volume
averaged measure of the relative crack (ace
displacements. The local volume for matrix Crack~' damage is at the ply level, whereas the local

~ 70 volume for delamination damage Is at the laminate
IWO,6 3,9A 01121 lta 10 10, 51'level. Theref'ore. the damage-depenidentI IO'3D0 0 0 a ~ I "5~I'S~~0.11%'' constitutive model takes the form of laminate

L11.Wf p48- 24Z. fcz .5% 35.3% 67.0. s20% analysis equations modified by inclusion of the
Oil 016 */soo~o o Oita 4sis .46,.45 internal state variables.

r-leprmenal modui pfoo0rcuon This paper demonstrates the applicability ofIFig S Compauison of Experimenl~ nostris and Ilod0el P,,d4ctlocj the mode to predict the degraded engineering
of the Laminate Engneein Lialutu.. Dgra&-d by modulus. Ex. and Poisson's ratio. ujxy* of quasi-

90h at~aCa~o ed ti anLQisotropic and cross-ply laminates of
graphite/epoxy. The comparison between model

_______________________________predictions and experimental results is very
pamage-Depmndent LainauIte %I close. The authors believe that the good agreement

1.0 -reported herein demonstrates the validity of the
model fornfulation and the physical interpretation

of the Internal state variables.
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ABSTRACT

A continuum damage mechanics framework is utilized herein to develop

laminate equations for layered orthotropic composites undergoing

microstructural damage. The theory is capable of modelling the effects of

both matrix cracks and interply delaminations on both the internal forces and

moments resulting at the laminate level. The two damage modes are accounted

for via second order tensor valued internal state variables which account for

the locally averaged kinematics of microcracking in each damage model.

It is shown herein that the model may be utilized to determine the

effects of microcracking on ply level stresses, and this is demonstrated for

several example cases. Finally, it is shown that the accurate prediction of

ply stresses serves as a precursor to the development of evolution laws

governing the growth of damage.
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INTRODUCTION

Laminated composites with non-metallic matrix material are Known to

undergo a substantial amount of microstructural damage, including matrix

cracking, interply delamination, and fiber-matrix debonding. Over the past

decade, numerous papers have documented the effects of this type of damage

11,2]. This damage can be very forgiving in the sense that the cracks cause

localized and spatially variable component stiffness reduction which in turn

induces load redistribution so that structural performance is not

substantially impaired. In many materials the resulting stiffness loss is

almost inconsequential, usually less than ten percent for the axial component,

so that it is often assumed to be negligible when performing elastic stress

analyses. In addition, it is often not practical to calculate ply stresses in

:-1- oresence of damage since the damage may void the kinematic assumptions

(such as Kirchhoff-Love) and thus necessitate the development of highly

complex algorithms in order to calculate stresses in the damaged areas of the

component. Unstable crack growth in highly damaged areas can eventually have

a catastrophic effect resulting in component failure, usually due to fracture.

Thus, although elastic properties are not substantially degraded, small losses

in these properties ultimately cannot be ignored.

It is generally hypothesized that the growth of damage is driven by local

stresses, which are in turn affected by the damage process. Therefore,

although damage may not profoundly affect stiffness, it cannot be ignored in

the prediction of failure. The question which remains open at this time is

how much detail must be included in an attempt to model the effects of damage

on failure. Must each crack be followed from inception to ultimate arrest, or

can the effects of each crack be simplified in the model? Obviously, a model

which follows every crack will be highly complex, since typical structural

2



components can undergo tens of thousands of microcracks prior to failure. The

current research effort attempts to simplify this problem by applying

continuum damage mechanics to the analysis of laminated composites. In this

approach, first proposed by L.M. Kachanov in 1958 [31, it is hypothesized that

the effect of microcracks may be locally averaged on a scale which is small

compared to the scale of the structural component. Although the procedure has

been extensively utilized in the literature, it-has not been applied to

laminated orthotropic media until recently. At the time of this writing, the

authors are aware of three efforts in the open literature: Talreja [4-81,

Weitsman 19], and the model discussed herein 110-15]. The current model may

well be the only one which has been utilized to model ply level stresses, so

that damage evolution laws and failure can be modelled.

The authors have previously developed a damage model which is applicable

to laminated composites [10]. This microstructural damage may be induced by

mechanical loads or environment such as elevated temperature. The model has

been utilized to predict the stiffness loss in composite crossply laminates

with matrix cracks, and these results compare favorably to experiment

[11,12]. The model has also been developed for the case of combined matrix

cracking and interply delamination [13]. The model has been recently compared

to experimental results for axial stiffness [141 and in-plane Poisson's ratio

[15] in the presence of both damage modes.

In the current paper, the model is used to predict the effects of both

matrix cracks and delaminations on ply level stresses. It is shown that the

stress distribution is substantially altered by the damage state.

Furthermore, the predicted stresses are significantly affected by stacking

sequence. The outcome of the research is to show how the development of

damage causes stress redistribution which drives the development of new damage

modes.

3



MODEL DEVELOPMENT

The detailed development of the damage model has been previously

documented in a series of publications 110-151. Therefore, in the current

paper these developments will be reviewed only in enough detail to demonstrate

the procedure for calculating ply stresses in damaged laminates.

It is assumed that the effects of matrix cracking are reflected in the

ply level stress-strain relations [111:

0Lx  Q11 QI2 Q13 Q14 Q15  6 Lx  xx

Qo C -O
L 12 22 23 24 25 26 L yy
y
Lz  Q13 Q23 Q33 Q34 Q35 Q36 L z  a zz

CL Q14 Q24 Q34 Q44 Q45 Q46 L- 0
yz yz

Q15 Q25 Q35 Q45* Q55 QS6  "L, - 0 (1)

0 M
Lxy Q16 Q26  Q36 Q46  Q56 Q66  L xy-x

where aLij are the components of the locally averaged stress tensor, c Lij are

the components of the locally averaged strain tensor, and Qij are the

components of the elastic (undamaged) modulus tensor in ply coordinates.

Furthermore, a are the components of a second order damage tensor, defined

by [101

M 1 cc (2)
= : . u.n.ds'J vLS c  1 3

where VL is an arbitrarily chosen local volume element of ply thickness which

is sufficiently large that aM does not depend on the size of VL, uc  are
openin L, V,

crack opening displacements in VL, n are the components of a unit normal to

the crack faces, and S is the surface area of matrix cracks in VL' For

vertical matrix cracks (nz = 0), aM and aM are identically zero 1111.xz yz
I4



The laminate equations are constructed by assuming that the Kirchhoff-

Love hypothesis may be modified to include the effects of jump displacements

D D  D Du i, v, and wi, as well as jump rotations si and for the ith delaminated

ply interface, as shown in Fig. 1. Thus,

u(x,yz) = uo(x,y) - z 180 H(z-zi) si + H(z-zi) uD (3)

v(x,y,z) = v°(x,y) - z Iq,° + H(z-z.) 4. + H(z-z) v.i )

and

0 0

w(x,y,z) = w (x,y) + H(z-zi) w. (5)
1

where the superscripts "o" imply undamaged midsurface quantities, and H(z-zi)

is the Heavyside step function. Also, a repeated index i in a product is

intended to imply summation.

The displacement equations are averaged over the local area, AL'

shown in Fig. 2, in order to produce locally averaged displacements to be

utilized in the laminate formulation. Thus,

u(xYZ) L [u- z ( + H(z-zil(a.)) + H(z-zi) uD]dxdy (6)L AL A =11A 1

V f [ v - z(*+ H(z-zi)(*q)) + H(z-zi) v.ldxdy (7)
L L AL 1 1 A1

and

5



1 Iw + H(Z-Zw) W.]dxdy (8)
L(x'Y'Z) = A L A w + ( - i  i

LAL

By averaging the displacements, the delamination jump discontinuities are also

averaged over AL.

The laminate strains are given by

auL 
(9)

CL ax

avL 
(10)

Iaw
L

aW 
(11)

L z  az

avL  awL (12)

y ay

Iau 
L  aw L

= m'L + aw (13)
LZ'az ax

au L av LY L = + ax (14)
ay ax

Thus, due to the interply delamination all six components of the strain must

be included in the laminate formulation.

The laminate constitution is obtained by integrating the stress in each

lamina over the laminate thickness. The local lamina constitution is assumed

to be anisotropic since the jump displacements resulting from delamination

produce local anisotropic responses. That is, the out-of-plane shear strains,

and resulting from delamination will contribute to the forceYLxz YLyz
resultants.

6



The resultant midplane forces and moments per unit width of region VL

in the laminate are given by

N xt 2 L
Nf dz (15)

-t12

and

xt2 Lx
fa L dz (16)

y -t/2 y

Mxy

.;l' j i' !the laminate thickness.

The resultant laminate equations may be obtained by substituting

equations (6) through (8) into equations (9) through (13), and this result

into equations (1). This result is then substituted into equations (15) and

(16), and the divergence theorem is employed to obtain the following laminate

equations [13):

{N) = k Q 1  k"k (2k -z Z k { L

k=1 2kII

0 0
o 0

d al d+1 0
+ [Ql]i  ti  o + i (zi - Vi-l [Q2]i  D

I D D~
o3i 05i
0 a

n zM (17)
- fQ~k (zk -1) (al)k
k= 1

7



where Zk is the coordinate of the kth ply interface, (c0) represents the

locally averaged midsurface strains, (KL}  represents the locally averaged

midsurface rotations, and [Q1k is the elastic modulus matrix for the kth ply

in laminate coordinates. The last term in the above equation,

containing (aM )k' represents the effect of matrix cracking in the kth ply on

the in-plane forces [N). The remaining two terms contain

D
quantities ai', representing components of the internal state variable for the

ith delamination, and these terms are summed from one to d, the total number

0 .0 0
of delaminated ply interfaces. The components a, CI 2i' and a3i are defined

by

D 1 wndS (18a)

* Li S 2i

o 1 D nzdS (18b)
VLi S2i

o 1 1 ui n dS (18c)

O&3 ! Li S2 1 D

iL
i1 

a A voum n dS= - L n pl (18d)4i L 8 zALsT
2i 2i-1

o i -0 1 f D .
5i A dS = - n A dSl~. (18e)15=AL sB.i L T Iz

unit normal to the delaminations, which is usually of magnitude one. The signI
DO 0



N Q')S 2 2 t + 2  22s8  tB
Q2T 22T B 22B 22(24)

24 5LZ 22 t + S22 t

I

Note that the ijand Qjare in laminate coordinates.

By a similar procedure, the resultant moments are found to be

in 2nMQ = 1 k k ( z l) L - [ 2 ()_ (z - zk3) (KL)
k=-1 k-1 z k - I  k k -1)

k=l

0 
0

0 0

d 0 d+1 0
+ 1Q3]i i + [4]i(zi - zi-1) D

"2i i0 4i

03i (5i
0 0

1 Lz 2kk..21 (25)
2k~l [Q'k k k1

where

z IQ)T [SITT B B tB

I.i (26)
t I T tT + B tB + T tT + B tB

and

-zi [Q2_ il + z2 [Q]i

2 (27)
(z1 - Z i-

As in the case of the force resultant terms, the rotation terms must be

supplemented with terms coupling the bending moments with the shearing

deformations.
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It is apparent that for a given set of midsurface strains (c ) and

i<L) ,  as well as a given damage state, equations (17) and (25) can be used

to obtain the force resultants (N) and moment resultants (M). Since the

midsurface terms are considered to be input, it remains only to obtain the

current damage state for a given laminate. In principal this should be

accomplished via a set of internal state variable evolution laws of the form

*M _ *M M D
aij ij(cki To ki' ak) (28)

and

.0 D M D
ij 0 ij T kk' ktk I) (29)

where the quantities of interest are for the plies above and below the

delamination. However, evolution laws of this type are still in the

developmental stage for laminated composites. Therefore, as an interim

measure, the authors have developed a procedure for evaluating the damage

state which will be discussed later in this paper. Thus, the current internal

state can be obtained independently of the laminate stacking sequence.

EVALUATION OF PLY STRESSES

In order to evaluate the stress state in each ply, it is first necessary

to substitute displacement equations (6) through (8) into the locally averaged

strain definitions (9) through (14). Utilizing the divergence theorem on this

result will then give the following equations for the strains in each ply.

L = 0 -z [ H(z-zi) C5il + H(z-zi) a (30)L L L 53



CL L - z [ + H(z-zi) a] + H (z-zi) a i (31)
y y y

L: CLz + H(z-zj) Oli (32)L z

C ZlL + H(z-z i) a iD (33)Cyz yz yz

L oZ LDZ L 4

C L -C + H(z-z i) Di] (34)Lxz xz xz

0

CL = CL L (35)
xy xy xy

The above equations may be utilized to obtain the ply strains, and these

. may be substituted into equations (1) to obtain the stresses in each

ply. The ply stresses, strains, and damage parameters may then be utilized to

develop evolution laws of the form described by equations (28) and (29).

Since the ply stresses determined by this procedure represent locally

averaged values, they must be considered to be far-field stresses, so that

equations (28) and (29) may more properly be written:

-M -M k K
ij ij (ck I T, t a k K I  K 11) (36)

and

.D T M 0 K K (37)m ij =  ij (ck ' LT.a kitak t i III KII1 (7

where Ki, KII, and KIII are the stress intensity factors, which relate the

far-field stresses to the crack tip stresses for a given crack geometry.

12
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however, it is assumed that the geometry of both matrix cracking and

delaminations is sufficiently independent of stacking sequence that thE stress

intensity factors may be treated as "material properties" and thus possess the

same stress intensity factor dependence for all stacking sequences. Thus,

they are encompassed implicitly in the material constants required to

characterize damage evolution laws (28) and (29).

DAMAGE VARIABLE CALCULATION

As previously mentioned, the damage variables can be obtained from

evolution laws (28 and 29). Since the formulation of the growth laws is

currently in progress, the variables are presently calculated for a specific

damage state in the laminate. In laminated continuous fiber composites, the

.wr types or damage variables of interest are for matrix cracks and

delaminations. The damage variables can be calculated by using equations (2)

and (18). In order to demonstrate the model, the displacement of the crack

and the delamination interfaces is assumed to vary sinusoidally with zero

displacement at the edges (see Figure 4). When integrating equation (2) with

a sinusoidal displacement distribution, the following expression

for a results:

CLM = 2 u M N (38)
2 0Oc

where:

Nc is the number of cracks per inch in the ply.

u is the maximum displacement of the interface.

13



When dealing with the off-axis plies, a simple geometrical relation is assumed

M Mbetween a2 and a, yielding:

M 2 sine COS U0 NCM (39)08

In this study, the "far-field" ply stresses are calculated for only one
fixed input strain (c xo). Since there is a fixed strain input only in the x-

direction (all other strains are zero), it is assumed that all of the

delamination damage variables except those associated with displacement in the

x-direction (a) have a negligible effect on the' laminate stresses. The

calculation of the damage variable is approximated by of creating an

equivalent effective circular shaped delamination which simulates the separate

..... ations found between the actual laminate plies in question (Figure

5). As with the matrix crack damage variable, a sinusoidal delamination

interface displacement distribution is assumed. The average surface area of

the equivalent delamination is equal to the total delamination area between

the laminate plies in question. Using equation (18c) and assuming a

sinusoidal interface deformation shape results in:

0 = 143.91 (40)
3 0 r

where

u is the maximum interface displacement in the x direction.

r is the radius of the equivalent delamination size.

I
I



MODEL RESULTS

A computer code has been constructed to determine the effect of damage on

the "far field" ply stresses in composite laminates. Results presented are

for a given laminate strain cxo = .01 (all other strains assumed to be

zero). Damage variables were calculated for matrix cracks in a saturated

damage state using equations (38) and (39) assuming u = 0001". The off-axis

M M
dnd 9G° plies use the matrix crack damage terms of u8 and u 2, respectively.

No damage is assumed in the 0* plies. Since the laminate is subjected only

to exo, UD is assumed to be the only delamination damage component. This term

is calculated for an equivalent delamination area by the use of equation (40)

with u0  .00001".

The results obtained from the model are shown in Table 1 and Figures 6-

11. As evidenced from the results, the damage significantly affects the far-

field ply stresses. Damage variables were calculated by using equations (38-

40) to simulate damage existing in several previously tested laminates.

Matrix cracks had a significant effect on ply stresses in the 900 plies in

cross-ply laminates. The largest number of matrix cracks was evident in the

90* plies of the [02/902]s laminate resulting in a thirty-four percert far-

field ply stress reduction. The two quasi-isotropic laminates developed

different damage resulting in dissimilar far-field ply stresses. The

[90/±45/0I s  laminate exhibited little matrix cracking and corresponding

reduction of ply stress in both 900 and ±45 ° plies. The 0/±45/90 s laminate

exhibited a similar stress reduction in the ±45 ° plies, but showed a

substantial stress reduction (fifteen percent verses one percent) in the 90:

plies when compared to the [90/±45/0] s laminate. It should be noticed that

only the stresses in plies between delaminations were affected by the

delamination. This is a result of symmetric delamination damage about the

15
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midplane of the laminate. For this damage state, the resulting 3 terms are

equal in magnitude, yet opposite in sign. By observing equation (30), it is

apparent that for fixed strain and a symmetric damage state, the laminate

strains are affected only in the region between the delaminations. The matrix

cracks are shown to alter the constitutive nature of the plies, and

delamination effects are incorporated into the laminate through the laminate

equations. This alteration in ply stresses will significantly affect the

growth of new damage in the composite.

SUMMARY AND CONCLUSIONS

The authors have presented a continuum damage model that includes damage

terms resulting from both matrix cracking and delamination. This model has

I - , pability of predicting the mechanical constitution of a laminated

composite with damage. The model incorporates the effect of damage by tensor

valued internal state variables. The internal state variables physically

represent the local volume averaged relative crack face displacements. The

effect of matrix cracks is in the local ply constitutive behavior.

Delamination effects, however, are reflected through the laminate equations.

Results of this work illustrate that the stress state in the laminate is

substantially influenced by damage. In the [0 2/90L] s laminate, matrix cracks

and delaminations reduce the stress in the 900 plies by almost sixty

percent. For cross-ply laminates, the damage induced ply stress reduction

varies from about forty to sixty percent of undamaged stress in the 900

plies. Stress reduction in angle-ply laminates is less dramatic (depending on

location and size of the delamination). This alteration in stress state is

critical in determining both the magnitude and location of damage development.
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Table 1. PLY STRESSES RESULTING FROM MATRIX
CRACKING AND DELAMINATION

LAMINATE PLY INITIAL STRESS STRESS DELAMINATION MATRIX
PLY STRESS W/MATRIX W/MATRIX LOCATION AND DAMAGE
a (ksi) CRACKS CRACKS & MAGNITUDE VARIABLES

DELAM. D M M
o (ksi) a (ksi) 03 u2 u8

10/90] s  0 211.4 211.4 211.4 0/90 0 0
90 14.0 9.6 8.5 16.6% .00318 0

.00076

10/ 9021s 0 211.4 211.4 211.4 0/90 0 0
90 14.0 9.5 7.9 24.2% .00326 0
90 14.0 9.5 7.9 .001109 .00326 0

10 2/90 21s 0 211.4 211.4 211.4 0 0
0 211.4 211.4 211.4 0/90 0 0
M 14,0 9.2 6.0 49.5% .00344 0
90 14.0 9.2 6.0 .002267 .00344 0

[0/9031 s  0 211.4 211.4 211.4 0 0
90 14.0 10.6 8.3 0/90 .00247 0
90 14.0 10.6 8.3 35.3% .00247 0
90 14.0 10.6 8.3 .001617 .00247 0

[0/t45/90 s  0 211.4 211.4 211.4 0 0
45 64.4 64.0 64.0 -45/90 0 .00067

-45 64.4 64.0 64.0 57% 0 -.00067
90 14.0 11.8 8.2 .002611 .00157 0

190/2_45/0] s  90 14.0 13.9 13.9 .00060 0
+45 64.4 64.0 64.0 +45/-45 0 .00067
-45 64.4 64.0 48.7 52% 0 -.00067

0 211.4 211.4 161.0 .002382 0 0
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A CUMULATIVE DAMAGE MODEL OF MATRIX CRACKING AND
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ABSTRACT. A model is presented herein for predicting the effects of
microstructural damage on the constitutive behavior of laminated
continuous fiber composites. The model is developed using the
approach of continuum damage mechanics. Second order tensor valued
internal state variables are constructed which reflect the locally
averaged effects of both matrix cracks and interply delaminations.
Because both of these damage modes exhibit statistical inhomogeneity
in the coordinate dimensions normal to the plane of the laminate, the
model includes a weighted effect of the distance from the midplane.
Linear elastic fracture mechanics is utilized to construct the
parameters necessary to characterize the damage dependent material
properties. The resulting model is then shown to be independent of
the stacking sequence and ply orientation in the laminate.
Comparisons of the model predictions to experimental results reported
herein for several stacking sequences tend to support the validity of
the model.

INTRODUCTION

The method of continuum damage mechanics assumes that the exact
analysis of a multiply connected domain with numerous microcracks is
hopelessly complex. Alternatively, the effects of these microcracks
on the macrophysical response are reflected via one or more internal
state variables (1) called damage parameters. The initial use of
damage mechanics appears to have been due to the observation that in
metals classical plasticity theory breaks down when significant grain
boundary sliding and/or microcavitation occur because the initial
elastic properties are not observed on unloading [21.

In the last twenty years there has been an incredible expansion
of research in damage mechanics, as evidenced by two recent review
articles [3,4,5] and the publication of the first textbook devoted
entirely to damage mechanics [6]. However, as pointed out in
reference 5, although substantial research has been performed on
metals, concrete, and geologic media, very little research has been
detailed on laminated composite media. In fact, to these authors'



knowledge, only three concerted efforts have reached the open
literature at the time of this writing. These are due to Talreja 17-
11], Allen, et al. 112-151, and Weitsman 1161. Although there may be
other applications of damage mechanics to laminated composites on the
threshold of making their way into the literature, we are unaware of
them at this time.

Unlike metals and concrete, laminated composites are complicated
by the fact that the layered orthotropy of the medium produces several
distinctly different and anisotropic damage modes. Therefore, whereas
it is often sufficient to deal with a single isotropic (scalar valued)
damage tensor in initially isotropic and homogeneous media, this
simplicity cannot be utilized in laminated composites. Furthermore,
each of the damage mechanisms is interrelated and extremely difficult
to distinguish experimentally. Finally, the damage may not be
considered to be statistically homogeneous through the laminate
thickness. Therefore, the application of continuum damage mechanics
to laminated composites is much more complicated then many previous
applications.

An example of a composite laminate with two distinct modes of
damage is shown in Fig. 1 117]. In this schematic there are matrix
cracks in the crossplies and delaminations at the ply interfaces.
Note that the cracks are oriented and statistically nonhomogeneous in
the out-of-plane coordinate direction. Experimental observation [181
indicates that the matrix cracks are load induced, whereas the
delaminations are driven by stress concentrations at the matrix crack
tips. Therefore, significant interaction of the damage modes is
observed. Although not shown in the figure, there are often
additional damage modes observed prior to component failure, including
fiber-matrix debonding, fiber fracture and fiber crimping and/or
buckling in compression. An excellent review of the genesis of these
events is described in further detail in reference 10.

The ultimate objective of any continuum mechanics model is to
design away from failure. In the sense that laminated composites fail
due to a complex sequence of damage events, it is essential to capture
the important features of the damage process in order to accurately
predict failure. In other words, the failure function should
accurately reflect the history of damage via the damage parameters.
Although this will be a complex task in laminated composites, the
current paper discusses an ongoing effort to-do just that.

A continuum damage model must contain four essential ingredients:
1) stress-strain-damage equations; 2) damage growth laws for the
damage ISV's; 3) a failure function describing local failure in terms
of the damage ISV's and observable state variables; and 4) an
algorithm for solving boundary value problems in which the state is
nonhomogeneous. If steps one through three can be accomplished
accurately, then step four is relatively straightforward, involving a
procedure not unlike extending an elastic algorithm to include
plasticity. Steps two and three tend to be the most complex,
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especially for laminated composites. Although there has been some
research on these two components of the model, the authors would
consider this work exploratory at this time. The subject of the
current paper is step one. The fundamental difficulty in this
procedure is to develop a model which is independent of ply
orientation and stacking sequence. Of course, the ultimate goal of
this research is step three, to predict failure as a function of the
current damage state.

MODEL DEVELOPMENT

The authors have been developing a model for predicting the
constitutive behavior of laminated continuous fiber composites [12-
151. This model utilizes the concept of continuum damage mechanics,
in the sense that the effects of microcracks are reflected via
internal state variables (ISV's) in the constitutive equations, rather
than treating each microcrack as a separate internal boundary.
Because only the average macroscale effect of microcracking is
modelled rather than the effect of each individual crack, the model is
phenomenological in nature. Since cracking is not statistically
homogeneous in the coordinate direction normal to the laminate,
statistical weighting is necessary in this direction, and this is
accomplished via kinematic constraints imposed on the laminate
equations.

The model has recently been extended to predict the response of
laminates with both matrix cracks and interior delaminations [141, as
shown in Fig. 1. This problem is complicated by two factors. First,
because these two damage mechanisms are oriented differently, they
require two separate tensor-valued damage parameters. Furthermore,
the mechanics of these two damage modes are substantially different.
The matrix cracks may be assumed to be statistically homogeneous over
each ply in a small local volume element. Therefore, classical local
volume averaging may be used to obtain this damage parameter. On the
other hand, delaminations are not statistically homogeneous in the z
coordinate direction. This requires that a modification be made to
statistical averaging techniques. Although statistical homogeneity is
assumed in the x and y coordinate directions, a kinematic constraint
similar to the Kirchhoff-Love hypothesis is applied in the z
direction. The resulting damage parameter is a weighted measure of
damage, with delaminations away from the neutral surface causing a
greater effect on laminate properties.

The model development proceeds from the assumption that all
material inelasticity is contained within small zones surrounding the
microcracks. The effect of matrix cracks on ply level constitutive
equations is accounted for via the local volume average of the diadic
product of the crack opening displacement vector ui and the crack

face normal n
J
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M 1 c- C ~~i 3 ui ds (1)

where VL is the local volume for which cracking can be considered

statistically homogeneous, and Sc is the surface area of cracks in

VL. For matrix cracking VL is typically one ply in thickness. The

ply level stress-strain relations are therefore given by

ij = C ) (2)

13 ijkit'ki (2)k

In order to account for interply delamination the following
kinematic assumption is made (See Fig. 2.):

U(x,y,z) = u0(x,y) - ziB 0 + H(z-Zk)BkD + H(z-zk)UD (3)

v(x,y,z) = v (x,y) - ZI1 0 + H(z-zk) 0} + H(z-zk)VD (4)

and
w(x,y,z) = wO(xy) - H(Z-Z 0W 

(5)

where u and v are components of the in-plane displacement and w is the
out-of-plane displacement and H is the Heavyside step function.
Furthermore, s and * represent rotations of the midplane. The
quantities with superscripts o are undamaged midsurface values, and
quantities with superscripts D are caused by interlaminar cracking.

Employing standard laminate averaging techniques will result in
the following laminate equations [14]

4



n 1n2 2
n IQlk(zk - zkl) {c ) 7 IQlk(zk - Zk-) (L)

k=1 k=1

0 0
o 0

d 0 d,1 0
+ 1 [1i t + (zi - zi- 1) 1&2i D

i= i2ii 4i
DD

a3~ i 5i

k1 iQk (zk - zk1) a (6)

(M 1 2 2 o 1

{M)~~ -- zkl {CL Q I [Q~ z -Z

o r
o 0
00

d 2 D1 d+l 0+ I 2 ] aill + iYI  2 i z 2
3 4i-1) Q

i=2 i =4i

D 0
031CL5
0 O

I n Q2 Zl2 M (7)

k= 1

where (N) and (M) are the resultant forces and moments per unit length

respectively, and {a and {a 0L represent the damage due to matrix

cracking and interply delamination, respectively. Furthermore, n is
the number of plies, and d is the number of delaminated ply
interfaces, as shown in Fig. 3. 0

The internal state variable for delamination, (OL), is obtained

by employing the divergence theorem on a local volume element of the
laminate. The resulting procedure gives [141
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D 2 W (8a)
Ii = VLi S2i

D 2 vinzdS (8b)2 i T= Vi S$2i  z

0 2 uDnzdS (8c)3 i V Li

oI 1 0 nd (8d)

$21

DI f 1 indS (8e)"5i AL SB z
S21

where the subscript i is associated with the ith delaminated ply
interface. Furthermore, VLi is equivalent to tiAL, where ti is the

thickness of the two plies above and below the delamination, as shown
in Fig. 4.

Furthermore, the matrices [Q] with subscripts k are the standard
elastic property matrices for the undamaged plies. The
matrices IQI with subscripts i apply to the ith delaminated ply
interface. They represent average properties of the plies above and
below the delamination. These are described in further detail in
reference 14.

Determination cf Ex and vxy for the Mixed Damage Mode

Now, suppose that one is interested in modeling stiffness loss as
a function of damage state. In order to do this it is necessary to
construct the (stacking sequence independent) material parameters
developed in the previous section. The loading direction engineering
modulus, Ex, and Poisson's ratio, vxy' of the laminate are defined as

IaN
I x1t aB (9)

i aNx"x N (10)

t ac
Y 6



For the purpose of comparing the model predictions to
experimental results, we will confine this development to the case of
a symmetric, balanced laminate with a delamination site symmetrically
located with respect to the laminate midplane. For this special case,
(K) = 0 and the fourth term in equation (6) is zero.
Furthermore, Ili = 0 and the third term in equation 6 is the same for

both delamination sites. Substituting equation (6) into equations (9)
and (10) results in the following expressions for Ex and v

n 2
Ex=~ ki il + 2 (ai ( 1 02 ~+ a1 . 7 . (11)

n kI (Qll)k ( -  ---)k nac 0 a

1 n2x 2 2
n 1 (Qi2)k(- ~cxk + 2 (n) (Q14 a- + Q15 ac-)

V - k=1 aY 2 - (12)

1 a2 ( a+ 2- a3

k~l(2i k' yyy

where it is assumed that all plies have the same thickness so that

zk -z k-i = tpl, (13a)

ply _ 1 (13b)

t n

tl 2
1- 2 (13c)

Furthermore, damage introduces local anisotr6py so that

[Q11 Q12 QI3 Q14 QI5  QI6 1
Q)k Q12  Q22 Q23 Q24 Q25 Q26  (14)

L16 Q26 Q36  Q46  Q56  Q66j

7



It has been previously shown 1191 that

14 f +Q12 )J (15)

1 - A -B 1

Q1 (Q11 1) (16)

24 2 Q22  22) (17)

1 - A -B
Q2 2f (Q12 + p12) (18)

where the superscripts A and B designate the property of the ply

immediately above and below the delamination, respectively.

Determination of Internal State Variables

Implementation of equations (11) and (12) to predict the damage
degraded laminate moduli requires the specification of the partial
derivatives of the internal state variables for a given damage
state. In the absense of growth laws, the damage state must be
determined experimentally. Expressions for the internal state
variables have been previously developed by the authors [13,141 by
employing energy principles. In the original constitutive theory
formulation [121 the local energy loss contribution to the Helmholtz
free energy is directly related to the internal state variables.
Furthermore, the local energy loss is also directly related to the
fracture mechanics based strain energy release rate for crack creation
during load-up. Therefore, expressions for the internal state
variables have been developed from expressions for the strain energy
release rate for each damage mode. In the case of matrix cracking in
cross-ply laminates,

BM E x Exa 1 (Pq x° E

(_X 2 q -1) (19)
Be--x =  

E m2qEE22

1

I8



where m is the number of consecutive 90' plies, p is the number of 0'

plies, q is the number of 90° plies, E is the initial undamaged

modulus, and Ex  is the damage-degraded
0 modulus corresponding to

matrix crack damage state SM * The term in the parentheses was

determined experimentally from tests on a I0/90/0Is laminate and is

given by

E
= 0.99969 - 0.061607 S + 0.04623 S2 (20)

OS

Finite element studies have shown that the effects of adjacent layer
constraint on the energy released by the 90" layers is a second order
effect 120]. Therefore, by using the following second order tensor
transformation

= a a a a Pq (21)
0 0BE°  iTp Jp mr ns BErsmn

where no bars refer to the crack coordinate system and the over bars
refer to the laminate coordinate system, equation (19) is generally
applicable to matrix crack damage in any ply of any laminate stacking
sequence.

In the case of off axis plies, other than 90, the tensor
transformation law given by equation (21) also requires the

determination of aa 2 /c 1 2 for matrix crack damage. This damage

parameter is related to shear deformation at the ply level which gives
rise to the sliding mode of relative crack face displacements.

Considering only that part of the energy loss, uL, due to shear

behavior we have [12]

c = I + H.O.T.'s (22)uL =68c6c8

where 168= -G1 2, the tensorial shear strain c6=c12 , and Q8=012 in

contracted notation. Using fracture mechanics concepts the local
energy loss may also be expressed in terms of the mode II strain
energy release rate due to matrix cracking, GI , as

uc = f G dS (23)
L VL SM II

9



where SM is the matrix crack surface area in the local volume element,

and V is the local volume for a single ply.
Equating expressions (22) and (23) and neglecting higher order

terms yields

IG2VL 6 S GIdS (24)

We now require an expression for G1 I as a function of SM. The strain

energy release rate may be defined as

GI I = - au (25)

where U = strain energy of the local volume due to shear behavior.
For a linear elastic material,

U I £12012 (26)

2G
U= 2G 121V

S212c6VL
where it is recalled that E6 is the tensorial shear strain. For

cracking in the fixed grip case where the "effective" material
stiffness is changing while the strain is held constant, substituting
equation (26) into equation (25) results in

= 2 aG12III M 2VLc6 aS (27)

where aG12/aS is interpreted as the change in the "effective" shear

modulus due to matrix crack development. Substituting (27) into (24)
yields

2£6 aG12c 12 ) dS (28)c8 (GI12)o SM  as

where G12 in equation (24) is written as (G12)o to distinquish the

initial undamaged modulus, (G12)o, from the degraded modulus, G12 . To

evaluate equation (28) and specify the damage parameter, aa8/£ 6 , we

I 10
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must have an expression for G12 as a function of S. Since aG12/as is

interpreted as the rate of change of the effective shear modulus, this

can be determined experimentally from the I±4512s where the plies are

in a state of pure shear. For this laminate
0

G x (29)
12 - 2(x - cy)

where ax is an applied uniaxial tensile stress, cx is the strain in

the loading direction, and cy is the strain in the transverse

direction. By using a 1.0 in. biaxial extensometer, equation (29)

gives G12 as a function of matrix crack damage in the 1.0 in. x 1.0

in. local volume as measured in the simple uniaxial test. Determining

G12 in this manner, aG12/aS in equation (28) may be directly

integrated and the damage parameter becomes

2 dG 12
a 8  2 G- - dS (30)

c6 ( 12 0 S SM30

The results of monotonic tensile tests on f±45 12s laminates of

AS4/3502 graphite-epoxy revealed an approximately linear relationship
between G and S. Furthermore, the number of matrix cracks in each
ply was essentially the same. Assuming a linear relationship between
G12 and S, equation (30) becomes

__8 2SM=  (G12)EXPI SM2 [1 -(31)
= 2 (G12 )0  SEXP

where (G12)EXP/(G12)o = 0.822 for SEXP corresponding to 21 cracks per

inch in each ply of the [±45J2s. Since the plies of the [±45 12s are

in pure shear, expression (31) may be used to determine a38/ac6 for

any ply with matrix crack damage. The fiber (crack) orientation of
the cracked ply is accounted for by the coordinate transformation
given by equation (21).

The delamination internal state variable was determined from
energy principles as well, except O'Brien's (211 strain energy release
rate model was used rather than experimental results. Since O'Brien's
model assumes that the strain energy release rate is independent of

II 11



the size of the delamination, the internal state variable is linear in
delamination surface area. Therefore,

am n (Ex -E )SD
n 0 ( - )  

(32)
x Q15

where n is the number of plies in the laminate, SD is the delamination

area and S is the total interfacial area in the local volume. E is
the modulus of the sublaminates formed by the delamination and is
given by

* 1 d
E T Eiti (33)

where d is the number of sublaminates and t is the laminate
thickness. By similar reasoning,

am D(Ey - E S
2 n 0 D (34)

Be y 2 Q24

Finally, as a first approximation for the cross-derivatives in
equations (11) and (12), we have

8M S mM
acx S12 aex (35)

acy S22  x(6

ay ~22 ~x

o00 S a 0
ac 2= S12 aC3
@x  II Bx (7

where Sij is defined by the following undamaged laminate stress-strain

relationships using the first term of equation (6)

S aNx (38)

12



S an y (39)
S22 t acY

i aNx (0
S12  t ac (40)

y

As an example, consider the case of cross-ply laminates where the
delamination site is at a 0/90 interface. Equations (11) and (12)
reduce to the following simplified forms

n a:M * SD
E=E x1 1 a (-o)(sf (41)

o 0

-- 2 (k E 2 2  + _) (LD (42)xy VxY 0 nE1 + E22  n (

where Ell, E22 and v12 are the standard lamina properties. It should

be noted that for cross-ply laminates amx/ac is the only nonzero
x x

internal state variable for matrix cracking. (am X/ac x is a ply

property given by equation (19).)

Experimental Program

A limited experimental program has been conducted to verify the
accuracy of the constitutive model formulation. Experimental tests
have been conducted on tensile specimens from a number of quasi-
isotropic and cross-ply laminates. The material system is AS4/3502

graphite/epoxy with Ell = 21.0x106 psi (144.8 GPa), E22 = 1.39xi0 6 psi

(9.58 GPa), v12 = 0.310 and G12 = 0.694x10 6 psi (4.79 GPa). The fiber

volume fraction is approximately 65% and the per ply thickness is
0.0055 in. (0.132 mm). The loading-direction modulus and Poisson's
ratio were measured by a biaxial extensometer with a 2 in. gage
length. Damane wm developed under tension-tension fatigue at 2Hz and
R=0.1. The progression of damage was documented by periodic
examinations by x-ray radiography and edge replication. Modulus
measurements were taken at each examination.

Comparison of Experimental Results to Model Predictions

The comparison of model predictions to experimental results for

13



Ex and vxy is displayed in graphical form in the bar charts of Figs.

5 and 6, respectively. Matrix cracks in the 90° layers are at the
saturation damage state for all laminates. The delamination interface
location and percent of delamination is listed under the laminate
stacking sequences in the bar charts. An x-ray radiograph of the
typical damage state in a 10/9031 s and 190/±45/01 s laminate is shown

in Figs. 7 and 8, respectively. It should be noted that Poisson's
ratio values for the two quasi-isotropic laminates are not given
because they were not measured experimentally. The comparison between
the experimental results and model results is quite close for Ex.
However, there are some discrepancies in the comparison
of V xy values. The authors attribute these discrepancies to the

difficulty in measuring Poisson's ratio. Because Poisson's ratio is
quite small for cross-ply laminates, the measurement is more sensitive
to experimental error.

SUMMARY AND CONCLUSIONS

The authors have formulated a constitutive model for laminated
composites with both matrix cracks and delamination damage. The model
is based on the concept of continuum damage mechanics and uses second-
order tensor valued internal state variables to represent each mode of
damage. The internal state variables are the local volume averaged
measure of the relative crack face displacements. The local volume
for matrix crack damage is at the ply level, whereas the local volume
for delamination damage is at the laminate level. Therefore, the
damage-dependent constitutive model takes the form of laminate
analysis equations modified by inclusion of the internal state
variables.

This paper demonstrates the applicability of the model to predict
the degraded engineering modulus, Ex, and Poisson's ratio, v xy, of

quasi-isotropic and cross-ply laminates of graphite/epoxy. The
comparison between model predictions and experimental results is very
close. The authors believe that the good agreement reported herein
demonstrates the validity of the model formulation and the physical
interpretation of the internal state variables.
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ABSTRACT

A mathematical model utilizing the Internal State Variable(ISV)

concept is proposed for predicting the upper bound of the reduced axial

stiffnesses in cross-ply laminates with matrix cracks. The axial crack

opening displacement at the matrix crack surface is explicitly

expressed in terms of the observable axial strain and the undamaged

material properties.

Crack parameters representing the effect of matrix cracks on the

observable axial Young's modulus are predicted for Glass/Epoxy and Gra-

phite/Epoxy material systems. The results of the present study show

that the matrix crack opening displacement is significantly influenced

by the ratio of crack length to the distance between two adjacent

cracks resulting in stiffness reduction in a cross-ply laminate with

matrix cracks.

Comparisons of the present model with experimental data and other

models in the literature shows a good agreement, thus confirming direct

applicability of the model to multi-layered cross-ply laminates.
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INTRODUCTION

Considerable research has been focused on the mathematical model-

ling of stiffness reduction in fiber-reinforced laminated composite

materials due to matrix cracks, Crack density, or the number of matrix

cracks per unit length of each layer, has been frequently utilized as

an independent variable to express the effect of matrix cracks on the

observable stiffnesses of a laminate. Also, the crack density in each

layer has been known to increase monotonically under cyclic loading or

monotonically increasing tensile loading.

A number of experimental studies[l-3] have shown that each cracked

layer, for example, the 90 degree layer in a [0/90n]s laminate sub-

jected to a tensile loading, can carry significant tensile loading. A

fundamental question has arisen from the discrepancy between these

experimental observations and the classical ply discount method, in

which each cracked layer is assume to shed its entire load carrying

capacity in the direction normal to the crack surfaces. A typical

example of this discrepancy is shown in Fig. 1., which shows that the

effective Young's modulus of a [0/90n~s laminated specimen in the axial

direction approaches asymptotically to the solution from the classical

ply discount method as cracks become saturated. This discrepancy is

caused by the fact that the classical ply discount method neglects all

out-of-plane stress components while each cracked layer, actually a

sub-structural component for a laminate, experiences a fairly high

level of out-of-plane stress components which are not negligible com-

pared with in-plane stress components.
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Among existing theoretical models, Hashin's model[6] based on the

complementary strain energy method may be considered as the most effec-

tive one for predicting the out-of-plane stresses and therefore, the

lower bound of the effective stiffness as a function of crack density.

However, there does not exist a relatively simple strain energy method

I based model for predicting the upper bound of the effective stiffness.

Therefore, the present study proposes an explicit solution to the

stiffness reduction as a function of crack density in a cross-ply lami-

nate with arbitrary stacking sequence by introducing an Internal State

Variable (ISV) based on the strain energy method.

Since matrix cracks in laminated composites can be observed at the

I specimen edges even with the unaided eye, the readers may be confused

by the terminology "INTEP.NAL," in other words, "HIDDEN FROM OBSERVERS."

The internal geometry and therefore the contribution of each crack to

the global response of a specimen with many cracks, however, can be

neither observed nor measured experimentally within reasonable accu-

racy. By utilizing the concept of a local volume element representing

I statistically homogeneous damage state, constitutive equations can be

easily reconstructed to relate observable state variables and an inter-

Inal state variable which is introduced by assuming a statistically
homogeneous damage state. In the present study, the average value of

matrix crack opening displacement multiplied by the unit normal to the

I crack surface is defined to be an internal state variable. At a fixed

damage state in which the number of matrix cracks per unit length is

known, the internal state variable for representing the crack opening

displacement will be explicitly expressed in terms of the kinematics of

I
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internal cracks.

Following a brief literature survey, the theoretical development is

presented along with a parameter sensitivity study of [0q/90r]s type

laminate configurations. The usefulness of the ISV concept is also

examined by comparing the result of the present research effort with

available experimental and theoretical studies in the open literature.

The generalization of the theoretical model is then described for

cross-ply laminates together with further applicability of the ISV con-

cept for analyzing angle-ply laminates containing arbitrarily shaped

matrix cracks.
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LITERATURE SURVEY

All existing theories can be categorized into five types according

to their main assumptions and mathematical techniques:

1. Shear-Lag Model ... Highsmith and Reifsnider[l)

2. Self-Consistent Model ... Laws and other authorsl4-5)

3. Complementary Strain Energy Method ... Hashin(6]

4. Strain Energy Method ... Aboudi[7]

5. Internal State Variable Method ... Talreja[8] and Allen et

al.[9-10]

Each model has its own advantages as well as disadvantages for pre-

dicting the stiffness reduction in a fibrous laminated composite with

matrix cracks. A brief review of the existing models and the necessity

of a new model is discussed in this section.

The shear-lag model has been used by Highsmith and Reifsnider[l]

for predicting the stiffness reduction of various types of laminates

due to matrix cracks. In the shear-lag model, the far-field tensile

stress was assumed to transfer to the cracked layer via shear deforma-

tion of a thin boundary layer in the vicinity of the layer interface.

Also, the shear stress was assumed to be dominant within the boundary

layer or so called shear transfer region. The procedure for shear lag

analysis is relatively simple and results in a reasonably accurate pre-

diction of stiffness reduction as a function of the crack density, even

though it is not clear how to determine the boundary layer thickness in
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a systematic way.

Laws and other authors[4-5] have utilized the self-consistent model

together with classical laminated plate theory for estimating the

stiffness reduction due to matrix cracking. The self-consistent method

is a variation of the method for evaluating the overall stiffness of a

composite material with various constituents including voids [11]. For

an isotropic material with stacked cracks, the self-consistent method

retrieves the average crack opening displacement which may be directly

obtained from the fracture mechanics solution to a single crack

imbedded in an infinite medium.

Hashin's model has utilized a relatively simple procedure based on

the principle of minimum complementary strain energy to calculate out-

of-plane stress components and the effective stiffness in a very expli-

cit way[6). For analyzing a [0q/90r]s type laminate, Hashin's model is

obviously the most effective one. However, difficulties arise when

Hashin's model is generalized for a multi-layered laminate of the types

[0p/90q/0 r/90 tls, because of the cumbersome nature of the complementary

strain energy method associated with assumed stress functions and trac-

tion boundary conditions.

Aboudi has expanded the displacement fields of a unit cell repre-

senting a body with aligned cracks in Legendre polynomials[7]. The

effective elastic moduli of a cracked solid were calculated from the

elastic energy stored in the cracked body. Aboudi's model gives approx-

imately the same result as the shear-lag method, and requires higher
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order expansions of the assumed displacement to increase the accuracy

of the model prediction.

Talreja has utilized the damage vector concept for modelling a two-

dimensional solid containing oriented crack arrays[8]. By assuming the

energy density in a representing volume as a function of the strain

tensor and the damage vector set, he reconstructed the constitutive

equations with the observable strains and the effective stiffness ten-

sor. This model may be considered as an alternative to the ISV method

described below.

Allen et al. have developed a model for predicting stiffness loss

as a function of damage state in composite materials[9-10]. Their model

utilizes a set of second order tensorial quantities previously proposed

by Kachanov[12] to describe each internal damage state. These tensorial

quantities have been named as internal state variables, defined by

17
aij uinj dS()

S2

where

q - 1, 2, ... to the number of damage modes in the laminate.

ui - displacements on the crack faces

nfj - unit normal to the crack surface

V - local volume over which cracks are arranged

7S- surface area of cracks in V.
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The stress-strain relations at the ply level are given by

aiJ " Cijkl (kl + IiJkl lkl (2)

The ISV model described by eqs. (1) and (2) together with exper-

imentally determined energy release rates for the [0/90/0]s laminate

has been utilized to predict axial stiffness loss due to matrix damage

in several graphite/epoxy cross-ply and quasi-isotropic laminates[13).

This last model has also been utilized to predict stiffness loss due to

delamination[14).

Among these models, the ISV method can be considered as a general

tool for predicting the overall effect of each damage mode on the

global response of a fibrous composite laminate. In order to predict

the upper bounds of effective Young's moduli for [0q/9 0rln,s type

laminates with matrix cracks, the authors present a relatively simple

procedure based on the strain energy method to estimate the internal

state variable representing the effect of the average matrix crack

opening displacement on the effective Young's modulus.
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MODEL FORMULATION

Consider a laminated composite material with infinite number of 0

and 90 degree layers as illustrated in Fig. 2-a. Since the crack pat-

terns in 90 degree layers may be random, displacement fields in each

crack element surrounded by two adjacent crack surfaces and two mate-

rial interfaces are different. It is apparent from Fig. 2-a that a

solution to the boundary value problem for all possible displacement

boundary conditions is impractical, or at least very cumbersome to

obtain. A relatively simple solution may be obtained by postulating a

fictitious boundary value problem which represents a statistically

arranged volume element shown in Fig. 2-b. The mutual influence between

cracks in different 90 degree layers may be implicitly taken into

account by assuming the y and z plane to remain plane throughout defor-

mation under the axial tensile loading, P, at far-field. The displace-

ment fields may then be assumed as

u - (uo/a)x + Z Z amn sinax cosfiy (3-a)
m.n

v - - (vo/t)y (3-b)

w - -(Wo/b)z (3-c)

where m, n - 1, 2,3 ... , k

a - (2m-l)r/2a

- (2n-l)r/2t
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Strain components are given by

C - u0/a + Z Z amn a cosax cosAy (4-a)

C yy - - V0 /t (4-b)

Czz - -'o/b (4-c)

'Yxy - -Z Z amn A sinax sinfiy (4-d)
m n

Otherwise, cjj - 0.

The total potential energy in the volume( ax2tx2b )is then

described by

1+VEUx.a

I Cijkl cij ckl dx dy dz . P Uxa(5-a)
2-b t ~ f0y-t

- - Cxx f(u0/a)2at + 2(u0/a)E E(-l)m+namn/P + Z Z(amna )2at/4)
2b m n m n

+ C y (v0/t)
2at + Cz (w0/b)

2at + 2CYZ vow0 a/b

- 2czx [(uowo(t/b) + (w0/b)E Z(~1(~~~/Bm n 1mnanA

- 2CXY [(uoVo + (v0/t)Z T()~~a~/8
m n

+ Gxy Z (amnP)2 at/4 - pu0  (5-b)

where p - P/2b.



Differentiating the total potential energy with respect to unknown

constants gives the following mxn+3 algebraic equations to solve.

p/2t - Cxx(uo/a) -CXY(vo/t) - Czx(w0 /b) (6-a)

+- (Cxx/at)E _(.l)(m+n)& mn/,m n

0 Cyy(v0/t) - Cxy(uo/a) + Cyz(w0 /b) (6-b)

-(Cxy/at)E E(-l)(m+n)a~/
m n

0 Czz(w0 /b) + Cyz(vo/t) - Czx(uo/a) (6-c)

-(Czx/at)Z ZC-l)(m+n)a M/Pm n

o - Cxx(u 0/a)-Cx(v/t4-C(wA/))(.l)(m+n)/ (6-d)

+ amn(at/4) [CXM2+G xy,62 ]

From eqs. (6-a), (6-b), and (6-c), vo/t and wo/b are determined.

v o,/t - (p/2t) CY~ z - CY z x(7 a
detfCij]

I -b (p/2t) Cyz xy (7-b)
det[Cjj)
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From eqs. (6-d), amn are expressed in terms of other constants.

4 (-I)(m+n) [-Cxx(uo/a)+Cxy(vo/t)+Czx(wo/b)]am n - [x' 2 +C9](8-a)
at# [Cxx02 + Gxy# 2 1

64at
Z Z(-l)(m+n)amn/,B - -[-Cxx(o/a)+Cxy(o/t)+Czx(wo/b)]E (8-b)
m n

where

m n Cxx(2m l)2(2n )2  + Gxy(a/t)
2 (2n )4  (8-c)

From eqs. (6-a) and (8-b), uo/a is determined.

r 21
uo/a - (p/2t) z + (8-d)

det[Cij] 74

L 64

Utilizing eqs. (1), (7-a), (7-b), (8-a), and (8-d), axx is

explicitly given by

(-l)p/2tIxX - (8-e)

- -.Cxx64f

All other components of aij are assumed to be negligible.

I
____________________
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The ISV, axx, given by eq. (8-e) represents the contribution of

crack opening displacement to the observable axial strain which can be

measured from a specimen with matrix cracks under uniaxial tensile

loading. axx can be rewritten in terms of observable strain, uo/a,

using eqs. (8-d) and (8-e).

.(Uo/a)
aXX (8-f)

2 4

I det[Ciji ][+4 x

The average value of the actual strain is then given by

all:: indIxx - xx 1 + axx ] (9-a)

act ind
yy - £yy (9-b)

act ind
-zz " ezz (9-c)

where

ind ind ind
Cxx - uo/a, c yy Vo/t, zz - "wo/b"

IThe stress-strain relations are given by

I actrxx Cxx CXY Cxz Cxx

I . act

yCyy Cyz  c (10-a)

I SYM. act

°zz)L Czz J zz.

I
I _________________________
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Substituting eq. (9-&), (9-b), And (9-c) into eq. (10-A) gives the

average vAlues of stress components expressed in terms of observable

strain components and effective stiffnesses.

ind
p/2t Cxx(l- ) Cxy CxZ (xx

Cxy(l-) Cyy Cyz  
Cyy (10-b)

ind0 Cxz(1-) Cyz  CzZ tzz J

where

1
(10-c)

24
F cyy Czz -Cyz F

11 det[CijJ ii

Since the average value of the out-of-plane normal.stress, ayy, is

zero in eq. (10-b), classical laminated plate theory can be directly

applied for expressing the effective Young's modulus of a damaged

[0q/90rls laminate as a function of the crack density, t/a, and the

elastic properties of an undamaged material. For a [0q/90r]s laminate

under uniaxial tensile loading, a compact analytical solution to the

effective Young's "mbdulus is obtained as follows.

By replacing subscripts x and z with L and T, respectively, and

rearranging terms, plane stress constitutive relations are obtained.

L CLL CLT(-)(-a)

aTT CLT CTT(l-) 'ITT (1a
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The effective stiffness matrix for a [0q/90 r]s laminate under

in-plane biaxial tensile loading becomes

qCLL+r(I--2)C[ [q(l-rl)+r]CLT
[j (11]il-b)

[q+r(l- 2)]CLT q/l- l)CTT+rCLL

where rl and 2 represent the effects of matrix cracks in 0 and 90

degree layers given by eq. (10-c), respectively.

If 0 degree layers are assumed to remain undamaged during deforma-

tion, the inverse of eq. (11-b) can be written as

F j 1 q+r [r(EL/ET)+q -VLT[q+r(l- 2)) 1
CTTdet[Cj) [ -VLTr q(Ej/ET)+r(l-J 2)

The effective compliance matrix of an undamaged [Oq/ 90r]s

laminate, [Sij), is retrieved by setting a/t - T. he normalized axial

stiffness, S11I/SI, then can be described by

f2r[ r(EL/ET) + q vLT(q+r) ]

SIl - 1 - (12-a)

2 2
(r+qEL/Er)(q+rE,/ET) -LT(q+r)
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where

2 (12-b)

4

S n GT(a/t)2  
(12-c)

m n (2m-l)2 (2n-l)2 + (2n-l)4

PET

I'vLTvTL
-

1
(12-d)

(1-mTT'2vLTvTL)(I+vTT)

The non-dimensionalized crack opening displacement, 6, is given by

U x-a

- ( u lX. - u Ix a )/uIx -, - 1 -

y-t y-t Uo

7r2 (-l)n-l cosy

2A GT(a/t)2
m n (2m-l)2 (2n-l) + (2n-1)3

PET

and the variation of 6 is illustrated in Figs. 3-a and 3-b for typical

isotropic and orthotropic material systems, respectively. The crack

parameter, r2, computed from eq. (12-a) is listed in Table 1 for most

commonly used fibrous composite materials given in Table 2. Also, it

should be noticed that the ISV for matrix cracks described herein can

be obtained by assuming fixed grip mode, in which uo/a is treated as a

known variable.
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For an isotropic material, the normalized axial stiffness from the

self consistent model[4] is given by

1
I/S1 - ____________ - 1 - £2,s (13-a)

1 + (/2)(l-v 2)(t/a)

Thus,

1

2,s 2 (alt) (13-b)

1+
7(r w2)

Please notice that eq. (13-a) can be directly obtained from the crack

opening displacement calculated from fracture mechanics as described

below.

The mode I crack opening displacement, Ux, is given by

2(l-v2)aa)
E

The average value of u. along the crack surface becomes

I

2(1°v2)a '= (t2.y2)dy
ux, -

I E 2 c

I rt(l-v2),7

2E

The contribution of ux,ave to the observable strain is then given by

ux,a,,e/a - (r/2)(l-v 2)(t/a)( a/E) (14-c)



18

when the representing volume is 4at. The normalized axial stiffness

is expressed by

1

which is identical to eq. (13-a) obtained from the self consistent

model.

The matrix crack parameter, 2, is plotted in Fig. 4-a for iso-

tropic materials with various Poisson's ratios. Fig. 4-b shows that 2

is almost independent of the material systems which have been commonly

used for measuring the effect of matrix cracks on the axial stiffness.

In Fig. 5, the crack parameters for various isotropic materials are

compared with those calculated from the self-consistent model.
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RESULTS AND DISCUSSION

The suitability of any theoretical model must be assessed by com-

paring the model with other models and/or experimentally measured data.

This is accomplished herein by comparing the present model predictions

with the non-dimensionalized effective Young's moduli (normalized

stiffnesses) of glass/epoxy and graphite/epoxy specimens in the open

literature[l, 10). Among published experimental data, the stiffness

reduction in [0/903]s glass/epoxy specimen reported by Highsmith and

Reifsnider [1) has been frequently cited by other researchers[5, 6, 7).

For this specific experimental data, the authors compared the present

model with other models [1, 5, 6, 7 ) in Fig. 6-a. Also, the experimen-

tal data from AS-4/3502 graphite/epoxy specimens with a number of

cross-ply stacking sequences[31 are compared with the present model

predictions in Figs. 7-a to 7-d.

The comparisons illustrated in Fig. 6 and Fig. 7 verify that the

present model gives a fairly accurate prediction of the degraded axial

stiffness as a function of the crack density for two commonly used

material systems. Furthermore, it should be noticed that the crack den-

sity(number of cracks per unit length) is not appropriate for repre-

senting the matrix crack characteristics. As an example, consider

(0n/90n]s specimens. If the crack density is utilized as an independent

parameter, the normalized stiffnesses of [0/90) and [02/9021s will be

different at the same crack density as shown in Figs. 7-a and 7-b.

This violates the most important assumption in the continuum mechanics,

i. e., observable state variables are independent of the size of the

MMllll lllI lllMl llll
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domain of interest. On the contrary, the ratio of the crack length to

the distance between two adjacent cracks, t/a, eliminates this incon-

sistency as illustrated in the same figures. Also, the study of Talreja

(Fig. 17 of ref.[8]) shows a similar result. Thus, the authors strongly

recommend to use a non-dimensional parameter, t/a, as an independent

parameter instead of the crack density for characterizing matrix cracks

in fibrous composite materials. This type of non-dimensional parameter

as an independent variable is an essential tool especially for describ-

ing history dependent phenomena such as plastic deformation of the con-

stituents of metal matrix composites.

Since the Internal State Variable defined by eq. (1) is a general

expression for an arbitrary damage mode, the entire mathematical formu-

lation presented herein can be easily modified for J0q/90 r~n,s type

laminates or angle-ply laminates with arbitrarily shaped matrix cracks

and interfacial delaminations. For a [0q/90r)ns laminate, the present

model can be directly applicable without any correction if our interest

is restricted to the effective axial Young's modulus as a function of

t/a. For off-axis or curved matrix cracks, the present model can be

generalized by utilizing the conventional tensor transformation law

for aj. However, another ISV is required for modelling the effect of

interfacial delaminations on the observable stiffnesses. This will be

accomplished by assuming relatively simple displacement fields similar

to eq. (3-a) to eq. (3-c) for matrix cracks together with a series/

parallel spring model for regions adjacent to interfacial delamina-

tions.
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The analytical solution to the crack parameter, 2, includes the

crack interaction in an explicit form. Furthermore, the internal state

variable, a.., results directly from the strain energy loss due to

matrix cracks(9]. By combining the present problem solving technique

with the study of Allen et al.[9], strain energy release rate at a

given matrix crack damage state can be predicted analytically. However,

the internal state variable presented herein may not be exact under the

following conditions.

(1) Vhen the matrix crack size and spacing cannot be assumed to be

homogeneous.

(2) When the matrix material should be assumed viscoelastic.

(3) When the matrix cracks are dominated by micro-cracks rather

than by those that cross the entire specimen width.

Even though the actual shapes of matrix cracks are quite different

from the idealized straight one illustrated in Fig. 2, the comparison

between the present model prediction and experimental data from two

different material systems shows very close agreement.
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Table 1. Crack Parameter

Crack Parameter (2
t/a

Class/Epoxy Graphite/Epoxy

0.0 0.0000 0.0000

0.1 0.0812 0.0828

0.2 0.1673 0.1704

0.3 0.2559 0.2603

0.4 0.3415 0.3469

0.5 0.4189 0.4247

0.6 0.4857 0.4917

0.7 0.5421 0.5480

0.8 0.5891 0.5948

0.9 0.6284 0.6338

1.0 0.6613 0.6664



Table 2. Material Properties

Material
Property

Glass/Epoxy Graphite/Epoxy
Ref. [1] Ref. [10]

ELL(Msi) 6.048 21.0

ETT(Msi) 1.885 1.39

GLT(MSi) 0.493 0.694

wLT 0.300 0.310

'TT 0.420* 0.461*

One Ply 0.008 0.005
Thickness(in.)

Assumed Values
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Fig. 6. Stiffness Reduction in Glass/Epoxy Specimens

(a) [0/9031s laminate

(b) [0/90). laminate
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Fig. 7. Stiffness Reduction in Graphite/Epoxy Specimens

(a) (0/90]. laminate

(b) 10 2/ 9 0 21, laminate

(c) (0/902)s laminate

(d) (0/903], laminate (continued to next page)
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Fig. 7. Stiffness Reduction in Graphite/Epoxy Specimens

(a) [ 0 / 9 0 )s laminte

(b) [02/9021 s laminate

(c) [0/ 902] s laminate

(d) [0/9033 s laminate
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